#### Population Structure

Timothy Thornton and Katie Kerr

Summer Institute in Statistical Genetics 2014

Module 10

Lecture 9

#### **Nonrandom Mating**

- HWE assumes that mating is random in the population
- Most natural populations deviate in some way from random mating
- There are various ways in which a species might deviate from random mating
- We will focus on the two most common departures from random mating:
  - inbreeding
  - population subdivision or substructure

## **Nonrandom Mating: Inbreeding**

- Inbreeding occurs when individuals are more likely to mate with relatives than with randomly chosen individuals in the population
- Increases the probability that offspring are homozygous, and as a result the number of homozygous individuals at genetic markers in a population is increased
- Increase in homozygosity can lead to lower fitness in some species
- Increase in homozygosity can have a detrimental effect: For some species the decrease in fitness is dramatic with complete infertility or inviability after only a few generations of brother-sister mating

## **Nonrandom Mating: Population Subdivision**

- For subdivided populations, individuals will appear to be inbred due to more homozygotes than expected under the assumption of random mating.
- Wahlund Effect: Reduction in observed heterozygosity (increased homozygosity) because of pooling discrete subpopulations with different allele frequencies that do not interbreed as a single randomly mating unit.

## Wright's F Statistics

- Sewall Wright invented a set of measures called F statistics for departures from HWE for subdivided populations.
- ► *F* stands for fixation index, where fixation being increased homozygosity
- F<sub>IS</sub> is also known as the inbreeding coefficient.
  - The correlation of uniting gametes relative to gametes drawn at random from within a subpopulation (Individual within the Subpopulation)
- F<sub>ST</sub> is a measure of population substructure and is most useful for examining the overall genetic divergence among subpopulations
  - ▶ Is defined as the correlation of gametes within subpopulations relative to gametes drawn at random from the entire population (Subpopulation within the Total population).

#### Wright's F Statistics

▶  $F_{IT}$  is not often used. It is the overall inbreeding coefficient of an individual relative to the total population (Individual within the Total population).

# **Genotype Frequencies for Inbred Individuals**

- ▶ Consider a bi-allelic genetic marker with alleles A and a. Let p be the frequency of allele A and q = 1 p the frequency of allele a in the population.
- ► Consider an individual with inbreeding coefficient *F*. What are the genotype frequencies for this individual at the marker?

| Genotype  | AA | Aa | aa |
|-----------|----|----|----|
| Frequency |    |    |    |

#### **Generalized Hardy-Weinberg Deviations**

► The table below gives genotype frequencies at a marker for when the HWE assumption does not hold:

| Genotype  | AA            | Aa       | аа            |
|-----------|---------------|----------|---------------|
| Frequency | $p^2(1-F)+pF$ | 2pq(1-F) | $q^2(1-F)+qF$ |
|           |               |          |               |

where 
$$q = 1 - p$$

- ► The F parameter describes the deviation of the genotype frequencies from the HWE frequencies.
- ▶ When F = 0, the genotype frequencies are in HWE.
- ► The parameters *p* and *F* are sufficient to describe genotype frequencies at a single locus with two alleles.

- ► Example in Gillespie (2004)
- Consider a population with two equal sized subpopulations. Assume that there is random mating within each subpoulation.
- Let  $p_1 = \frac{1}{4}$  and  $p_2 = \frac{3}{4}$
- Below is a table with genotype frequencies

| Genotype                  | Α             | AA                        | Aa            | aa             |
|---------------------------|---------------|---------------------------|---------------|----------------|
| Freq. Subpop <sub>1</sub> | $\frac{1}{4}$ | $\frac{1}{16}$            | <u>3</u><br>8 | $\frac{9}{16}$ |
| Freq. Subpop <sub>2</sub> | $\frac{3}{4}$ | $\frac{\overline{9}}{16}$ | <u>3</u>      | $\frac{1}{16}$ |

- Are the subpopulations in HWE?
- What are the genotype frequencies for the entire population?
- What should the genotypic frequencies be if the population is in HWE at the marker?

► Fill in the table below. Are there too many homozygotes in this population?

|                                                                                                 | Allele           | Genotype           |          |                               |  |
|-------------------------------------------------------------------------------------------------|------------------|--------------------|----------|-------------------------------|--|
|                                                                                                 | Α                | AA                 | Aa       | aa                            |  |
| Freq. Subpop <sub>1</sub> Freq. Subpop <sub>2</sub> Freq. Population Hardy-Weinberg Frequencies | 1<br>4<br>3<br>4 | 1<br>16<br>9<br>16 | 3 003 00 | $\frac{9}{16}$ $\frac{1}{16}$ |  |

► To obtain a measure of the excess in homozygosity from what we would expect under HWE, solve

$$2pq(1-F_{ST})=\frac{3}{8}$$

▶ What is  $F_{st}$ ?



- ▶ The excess homozygosity requires that  $F_{ST} =$ \_\_\_\_\_
- For the previous example the allele frequency distribution for the two subpopulations is given.
- At the population level, it is often difficult to determine whether excess homozygosity in a population is due to inbreeding, to subpopulations, or other causes.
- ▶ European populations with relatively subtle population structure typically have an  $F_{st}$  value around .01 (e.g., ancestry from northwest and southeast Europe),
- F<sub>st</sub> values that range from 0.1 to 0.3 have been observed for the most divergent populations (Cavalli-Sforza et al. 1994).

- ▶ Nelis et al. (PLOS One, 2009) looked at the genetic structure for various populations
- Obtained pairwise F<sub>st</sub> values for the four HapMap sample populations
  - ► Europeans (CEU) Africans (YRI): 0.153
  - ► Europeans (CEU) Japanese (JPT): 0.111
  - ► Europeans (CEU) Chinese (CHB): 0.110
  - Africans (YRI) Chinese (CHB): 0.190
  - Africans (YRI) Japanese (JPT): 0.192
  - Chinese (CHB) Japanese (JPT): 0.007

- F<sub>st</sub> can be generalized to populations with an arbitrary number of subpopulations.
- ► The idea is to find an expression for F<sub>st</sub> in terms of the allele frequencies in the subpopulations and the relative sizes of the subpopulations.
- Consider a single population and let r be the number of subpopulations.
- Let p be the frequency of the A allele in the population, and let  $p_i$  be the frequency of A in subpopulation i, where i = 1, ..., r
- ▶  $F_{st}$  is often defined as  $F_{st} = \frac{\sigma_p^2}{p(1-p)}$ , where  $\sigma_p^2$  is the variance of the  $p_i$ 's with  $E(p_i) = p$ .

▶ Let the relative contribution of subpopulation i be  $c_i$ , where

$$\sum_{i=1}^r c_i = 1.$$

| 1—1                |                            |                               |                            |
|--------------------|----------------------------|-------------------------------|----------------------------|
| Genotype           | AA                         | Aa                            | aa                         |
| Freq. Subpop;      | $p_i^2$                    | $2p_iq_i$                     | $q_i^2$                    |
| Freq. Population   | $\sum_{i=1}^{r} c_i p_i^2$ | $\sum_{i=1}^{r} c_i 2p_i q_i$ | $\sum_{i=1}^{r} c_i q_i^2$ |
| whore $\alpha = 1$ |                            |                               |                            |

where  $q_i = 1 - p_i$ 

- In the population, we want to find the value  $F_{st}$  such that  $2pq(1-F_{st}) = \sum_{i=1}^{r} c_i 2p_i q_i$
- ► Rearranging terms:

$$F_{st} = \frac{2pq - \sum_{i=1}^{r} c_i 2p_i q_i}{2pq}$$

Now  $2pq = 1 - p^2 - q^2$  and  $\sum_{i=1}^{r} c_i 2p_i q_i = 1 - \sum_{i=1}^{r} c_i (p_i^2 + q_i^2)$ 

So can show that

$$F_{st} = \frac{\sum_{i=1}^{r} c_i(p_i^2 + q_i^2) - p^2 - q^2}{2pq}$$

$$= \frac{\left[\sum_{i=1}^{r} c_i p_i^2 - p^2\right] + \left[\sum_{i=1}^{r} c_i q_i^2 - q^2\right]}{2pq}$$

$$= \frac{Var(p_i) + Var(q_i)}{2pq}$$

$$= \frac{2Var(p_i)}{2p(1-p)}$$

$$= \frac{Var(p_i)}{p(1-p)}$$

$$= \frac{\sigma_p^2}{p(1-p)}$$

# Estimating $F_{st}$

- ▶ Let n be the total number of sampled individuals from the population and let n<sub>i</sub> be the number of sampled individuals from subpopulation i
- Let  $\hat{p}_i$  be the allele frequency estimate of the A allele for the sample from subpopulation i
- Let  $\hat{p} = \sum_{i} \frac{n_i}{n} \hat{p}_i$
- A simple  $F_{st}$  estimate is  $\hat{F}_{ST_1} = \frac{s^2}{\hat{p}(1-\hat{p})}$ , where  $s^2$  is the sample variance of the  $\hat{p}_i$ 's.

# Estimating $F_{st}$

Weir and Cockerman (1984) developed an estimate based on the method of moments.

$$MSA = rac{1}{r-1} \sum_{i=1}^{r} n_i (\hat{p}_i - \hat{p})^2$$
 $MSW = rac{1}{\sum_{i} (n_i - 1)} \sum_{i=1}^{r} n_i \hat{p}_i (1 - \hat{p}_i)$ 

Their estimate is

$$\hat{F}_{ST_2} = \frac{MSA - MSW}{MSA + (n_c - 1)MSW}$$

where 
$$n_c = \sum_i n_i - \frac{\sum_i n_i^2}{\sum_i n_i}$$

#### **GAW 14 COGA Data**

- ► The Collaborative Study of the Genetics of Alcoholism (COGA) provided genome screen data for locating regions on the genome that influence susceptibility to alcoholism.
- ► There were a total of 1,009 individuals from 143 pedigrees with each pedigree containing at least 3 affected individuals.
- ▶ Individuals labeled as white, non-Hispanic were considered.
- Estimated self-kinship and inbreeding coefficients using genome-screen data

#### **COGA** Data

#### Histogram for Estimated Self-Kinship Values



#### **Historgram for Estimated Inbreeding Coefficients**

Estimated Inbreeding Coefficient



#### References

- Nelis M, Esko T, Magi R, Zimprich F, Zimprich A, et al. (2009) Genetic Structure of Europeans: A View from the NorthEast. *PLoS ONE* 4, e5472. doi:10.1371/journal.pone.0005472.
- Weir BS, Cockerham CC (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358-1370.