Estimating Relatedness in Homogenous Populations

Timothy Thornton and Katie Kerr

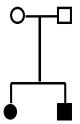
Summer Institute in Statistical Genetics 2014

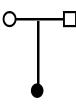
Module 10

Lecture 7: Part I

Incomplete Genealogy

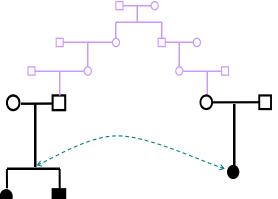
Many statistical methods for genetic data, e.g. linkage and association methods, are based on assumptions of independent samples or samples with known relationships.





Incomplete Genealogy

Misspecified and cryptic relationships can invalidate many of these methods.



Identifying Relative Pairs

- In principle, could determine the relationship between two individuals by simply looking at the percentage of IBD sharing in the genome for the two
 - parent-offspring sharing: 50% of genome
 - sibs: 50% of genome (on average)
 - avuncular: 25% of genome (on average)
- However, we do not directly observe IBD sharing. We only observe DNA sequences.

Genome Screen Data to Identify Relative Pairs

- It is now common to have genome screen data on hundreds of thousands of genetic markers.
- Genome screen data can be used to infer genealogical relationships.
- Example: Suppose we are interested in identifying the relationship between two individuals and assume for now that haplotype phase is known.
- ► Observed sequence on a chromosome from individual 1:
- ▶ Observed sequence on a chromosome from from individual 2:
 - $\dots \mathsf{GGATCCTGAACCTA} \mathbf{GATTACA} \mathbf{GATTACA}$
- If haplotype phase is known, blocks of identical DNA sequences can be used to infer relationships.

Genome Screen Data to Identify Relative Pairs

- Stanley F Nelson (UCLA Department of Human Genetics): IBD sharing between relatives: rapid drop in number of blocks yet size drops asymptotically:
 - ▶ 1st cousins: n=20-30, average size $\sim 20-30$ mb
 - ▶ 2nd cousins: n=5-8, average size~20mb
 - ▶ 3rd cousins: n=1-3, average size ~ 18 mb
 - ▶ 4th cousin: n=0-1, average size ~ 16 mb
 - ▶ 5th cousins: n=0-1, average size ~ 14 mb
 - ▶ 6th cousins: n=0-1, average size ~ 12 mb

Hidden Markov Model for Identifying Relative Pairs

- ► McPeek and Sun (2000) developed approximate likelihood method to identify relative pairs for close relationships
- ► Stankovich et al. (2005) extended method for more distantly related pairs (degree 13: 6th cousin). Software is GBIRP
- Uses a 2-state Hidden Markov model for IBD status (yes/no) to approximate the likelihood
- ► Likelihood is a function of the distance between genetic markers, frequency of alleles between the markers, and relationship of individuals

Hidden Markov Model for Identifying Relative Pairs

Find pairwise relationship that maximizes the log likelihood ratio for the observed genome screen data (g_1, g_2) over various types of relationships (up to 6th cousins)

$$log \frac{P(g_1, g_2|related)}{P(g_1, g_2|unrelated)}$$

- ► High power to identify relationships up to degree eight (third cousins once removed)
- lacktriangle Typical error in degree for relationship \leq eight is 1

GBIRP Results for Known Relationships

Table: GBIRP MS Pairs

ID1	ID2	Truth	Estimate
20001	30001	2	2
23908	24501	3	3
5809	3701	3	3
45101	45201	4	4
6807	9603	5	6
4801	3701	5	5
8201	42204	5	6
7202	7804	5	7
31001	7603	6	6
4801	5809	6	6
6802	21006	6	6
30602	20503	7	7
30603	9803	7	7
133505	30103	7	9
32204	1303	8	7
33404	4204	8	8
23804	1303	8	8
30501	7037	9	9
2901	602	9	Ø
6202	602	9	Ø
8003	1704	10	Ø
4902	42204	10	Ø
20503	1203	11	9
24001	32801	11	12
30501	7902	13	Ø

IBD Sharing Probabilities

- IBD sharing probabilities are another measure of relatedness for pairs of individuals
- ▶ For any pair of outbred individuals i and j, let δ_k be the probability that i and j share k alleles IBD at a locus where k is 0, 1, or 2.

IBD Sharing Probabilites for Outbreds

Relationship	δ_2	δ_1	δ_0
Parent-Offspring	0	1	0
Full Siblings	$\begin{bmatrix} \frac{1}{4} \\ 0 \end{bmatrix}$	$\frac{1}{2}$	$\frac{1}{4}$
Half Siblings	Ö	$\frac{1}{2}$	$\left \begin{array}{c} \frac{1}{2} \end{array}\right $
Uncle-Nephew	0	1 21 21 21 46 6	141212349
First Cousins	0	$\frac{1}{4}$	$\frac{3}{4}$
Double First Cousins	$\frac{1}{16}$	$\frac{\vec{6}}{16}$	$\frac{\vec{9}}{16}$
Second Cousins	0	$\frac{1}{16}$	15
Unrelated	0	ה לה" י	₽

Estimating IBD Sharing Probabilities: EM Algorithm

- ▶ It is often not be possible to determine exactly how many alleles a pair share IBD.
- Can estimate IBD sharing probabiliting using genetic marker data across the genome.
- ► Choi, Wijsman, and Weir (2009) proposed using an EM algorithm to estimate the IBD probabilities for this problem.

Estimating IBD Sharing Probabilities: EM Algorithm

- ► Suppose the data consists of *N* genetic markers accross the genome
- ▶ Assume for now that at we observe IBD sharing at each marker for individuals *i* and *j* in the sample
- Let X_k be the number of markers for which i and j share k alleles IBD, and let let δ_k be the probability that i and j share k alleles IBD at a merek where k is 0, 1, or 2..
- ▶ If the IBD sharing process at the markers is observed, what would the likelihood function be?

Estimating IBD Sharing Probabilities: EM Algorithm

► The likelihood function for the IBD sharing process would have the following multinomial distribution

$$L(X_0, X_1, X_2) = \frac{N!}{X_0! X_1! X_2!} \delta_0^{X_0} \delta_1^{X_1} \delta_2^{X_2}$$

where $X_k = \sum_{r=1}^N I \{ i \text{ and } j \text{ share k alleles IBD at marker } r \}$

- ► Could estimate the δ_k 's using the X_k 's, which are the sufficient statistics: The MLE is $\hat{\delta}_k = \frac{X_k}{N}$ for k = 0, 1, 2.
- The IBD process, however is not observed.
- What is the complete data and what is the observed data?

- ▶ The X_k values are the unobserved complete data.
- ▶ The observed data is the genotype data for individuals i and j at the N markers, and the X_k values are the missing data
- ▶ The E step of the EM algorithm calculates the expected value of X_k conditioned on the observed genotype data.
- ▶ Remember that initial values for the δ_k 's need to be given for the EM algorithm.
- ▶ Let $\delta^0 = (\delta^0_0, \delta^0_1, \delta^0_2)$ be the initial values.
- ▶ Let $\mathbf{G} = (G_1, \dots G_r, \dots G_N)$, where $G_r = (G_{i_r}, G_{j_r})$ is the genotype data at marker r for i and j.

- ▶ $X_2 = \sum_{r=1}^{N} I \{ i \text{ and } j \text{ share 2 alleles IBD at marker } r \}$
- $E[X_2|\mathbf{G},\delta^0] =$

$$\sum_{r=1}^{N} E\left[I\left\{i \text{ and } j \text{ share 2 alleles IBD at marker } r\right\} |\mathbf{G}, \delta^{0}\right]$$

$$= \sum_{r=1}^{N} E\left[I \left\{ i \text{ and } j \text{ share 2 alleles IBD at marker } r \right\} \middle| G_r, \delta^0 \right]$$

$$= \sum_{r=1}^{N} P(i \text{ and } j \text{ share 2 alleles IBD at marker } r|G_r, \delta^0)$$

$$= \sum_{i=1}^{N} \frac{P(i \text{ and } j \text{ share 2 alleles IBD at marker } r, G_r | \delta^0)}{P(G_r | \delta^0)}$$

► The numerator of the summand is $P(i \text{ and } j \text{ share 2 alleles IBD at marker } r, G_r | \delta^0)$

$$=$$
 $P\left(\mathit{G_r}|\ i \ \mathrm{and}\ j \ \mathrm{share}\ 2 \ \mathrm{alleles}\ \mathrm{IBD}\ \mathrm{at}\ \mathrm{marker}\ r, \delta^0
ight) imes$

$$P(i \text{ and } j \text{ share 2 alleles IBD at marker } r|\delta^0)$$

$$=P\left(G_{r}|\ i \ ext{and}\ j \ ext{share}\ 2 \ ext{alleles IBD at marker}\ r,\delta^{0}
ight) \delta_{2}^{0}$$

▶ $P(G_r|i \text{ and } j \text{ share 2 alleles IBD at marker } r)$ will be based on the population allele frequency distribution at marker r.

- ► For simplicity, assume that marker *r* is a SNP with the 2 allelic types labeled "0" and "1"
- Let p_r be the frequency of allelic type 1 in the population at marker k, where $0 < p_r < 1$.
- If the genotype of i is (1,1) and the genotype of j is (1,1) at marker r, then $P(G_r|i)$ and j share 2 alleles IBD at marker $r)=p_r^2$ (if HWE is assumed).
- ▶ What is the probability if the genotype of i is (1,2) and the genotype of j is (2,2) at marker r?
- ▶ What is the probability if the genotype of i is (1,2) and the genotype of j is (1,2) at marker r?

▶ From these probabilities, we can obtain $E[X_2|\mathbf{G},\delta^0] =$

$$\sum_{r=1}^{N} \frac{P\left(i \text{ and } j \text{ share 2 alleles IBD at marker } r, G_r | \delta^0\right)}{P\left(G_r | \delta^0\right)}$$

► Can similarly obtain $E\left[X_1|\mathbf{G},\delta^0\right]$ and $E\left[X_0|\mathbf{G},\delta^0\right]$, where

$$X_1 = \sum_{r=1}^{N} I\{i \text{ and } j \text{ share } 1 \text{ alleles IBD at marker } r\}$$

and

$$X_0 = \sum_{r=1}^{N} I\{i \text{ and } j \text{ share } 0 \text{ alleles IBD at marker } r\}$$

Maximization Step of EM Algorithm

- ▶ The M step involves maximizing the expected value of the log-likelihood (obtained in the E step) with respect to the δ_k parameters.
- ► The MLE is:

$$\hat{\delta}_{0} = \frac{E[X_{0}|\mathbf{G},\delta^{0}]}{E[X_{0}|\mathbf{G},\delta^{0}] + E[X_{1}|\mathbf{G},\delta^{0}] + E[X_{2}|\mathbf{G},\delta^{0}]}$$

$$\hat{\delta}_{1} = \frac{E[X_{1}|\mathbf{G},\delta^{0}]}{E[X_{0}|\mathbf{G},\delta^{0}] + E[X_{1}|\mathbf{G},\delta^{0}] + E[X_{2}|\mathbf{G},\delta^{0}]}$$

$$\hat{\delta}_{2} = \frac{E[X_{2}|\mathbf{G},\delta^{0}]}{E[X_{0}|\mathbf{G},\delta^{0}] + E[X_{1}|\mathbf{G},\delta^{0}] + E[X_{2}|\mathbf{G},\delta^{0}]}$$

- ▶ The next step is to set $\delta^1 = \hat{\delta}$ and then return to the E step of the algorithm.
- ▶ Continue iterating between the E and M step until the $\hat{\delta}^i$ values converge.

Estimating IBD Sharing Probabilities: Method of Moments

- Purcell et al. (2007) proposed a method of moments estimator for IBD sharing probabilities
- Estimate IBD sharing probabilities based on IBS sharing for pairs of individuals
- Implements the IBD sharing method of moments estimator in their software package PLINK

Estimating Kinship Coefficients

► Kinship coefficients can also be used to quantify relationships between two individuals.

Table: Kinship Coefficients

Relationship	ϕ
Parent-Offspring	1/4
Full Siblings	1/4
Half Siblings	1/8
Uncle-nephew	1/8
First Cousins	1/16
Double First Cousins	1/8
Second Cousins	1/64
unrelated	0

Note that $\phi = \frac{1}{2}\delta_2 + \frac{1}{4}\delta_1$

Estimating Kinship Coefficients

- ► Thornton and McPeek (2010) propose a method to estimate kinship coefficients using genetic marker data
- Consider once again a marker r with 2 allelic types labeled "0" and "1"
- ▶ Let p_r be the frequency of allelic type 1, where $0 < p_r < 1$.
- Consider two individuals i and j. For individual i, let $Y_{i_r} = \frac{1}{2} \times (\text{the number of alleles of type 1 in individual } i$ at marker r). So the value of Y_{i_r} is 0, $\frac{1}{2}$, or 1. Similarly define Y_{j_r} for individual j.
- ▶ It can be shown that $Cov(Y_{i_r}, Y_{j_r}) = p_r(1 p_r)\phi_{ij}$, where ϕ_{ij} is the kinship coefficient for i and j.
- ▶ Rearrange terms to see that $\phi_{ij} = rac{\textit{Cov}(Y_{i_r}, Y_{j_r})}{p_r(1-p_r)}$

Estimating Kinship Coefficients

- ► This relationship will hold for markers across the genome (with the allele frequency distribution changing for each marker).
- Can use data across the genome to estimate kinship coefficients for pairs of individuals
- ▶ Let *N* be the total number of markers in the data.
- ▶ For any pair of individuals i and j, can estimate ϕ_{ij} with

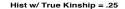
$$\hat{\phi}_{ij} = \frac{1}{N} \sum_{r=1}^{N} \frac{(Y_{i_r} - \hat{p}_r)(Y_{j_r} - \hat{p}_r)}{\hat{p}_r(1 - \hat{p}_r)}$$

where \hat{p}_r is an allele frequency estimate for the type 1 allele at marker r

Estimating Kinships Using GAW 14 COGA Data

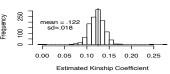
- The Collaborative Study of the Genetics of Alcoholism (COGA) provided genome screen data for locating regions on the genome that influence susceptibility to alcoholism.
- ► There were a total of 1,009 individuals from 143 pedigrees with each pedigree containing at least 3 affected individuals. Individuals labeled as "white, non-Hispanic" were considered.
- ▶ 10K SNP array (10,081 SNPs) on 22 autosomal chromosomes
- Estimated kinship coefficients using genome-screen data

Estimating Kinships Using COGA Data

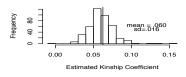




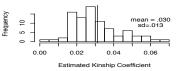
Hist w/ True Kinship = .125



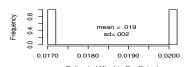
Hist w/ True Kinship = .0625



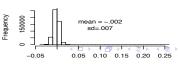
Hist w/ True Kinship = .03125



Hist w/ True Kinship = .015625



Hist w/ True Kinship = 0



Estimating Kinships Using COGA Data

- From the given pedigrees, two pairs of individuals that should have a kinship coefficient of .25 appear to be unrelated (estimated kinship coefficients of -0.006 and -0.003, respectively)
- Two pairs of individuals that should have a kinship coefficient of .125 appear to be unrelated (estimated kinship coefficients of -0.003 and 0.002, respectively)
- 9 pairs of "unrelated" individuals have a kinship coefficient around .125
- ▶ 2 pairs of "unrelated" individual have a kinship coefficient around .25

References

- Choi Y, Wijsman EM, Weir BS (2009). Case-control association testing in the presence of unknown relationships. Genet. Epi. 33, 668-678.
- McPeek MS and Sun L (2000). Statistical Tests for Detection of Misspecified Relationships by Use of Genome-Screen Data, Am. J. Hum. Genet. 66, 1076-1094.
- Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC (2007). PLINK: a toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 81, 559-575.

References

- Stankovich J, Bahlo M, Rubio JP, Wilkinson CR, Thomson R, Banks A, Ring M, Foote SJ, Speed TP (2005). Identifying nineteenth century genealogical links from genotypes. *Hum. Genet.* 117, 188-199
- ► Thornton T, McPeek MS (2010). ROADTRIPS: Case-Control Association Testing with Partially or Completely Unknown Population and Pedigree Structure. Am. J. Hum. Genet. 86, 172-184.

Estimating Relatedness in Populations with Admixed Ancestry

Timothy Thornton and Katie Kerr

Summer Institute in Statistical Genetics 2014

Module 10

Lecture 7: Part II

Relatedness Inference in Structured Populations

- Popular algorithms for relationship inference are based on a strong assumption of population homogeneity
- This assumption is often untenable. GWAS often have cryptic population structure (or ancestry differences among the sample individuals)
- In samples with population structure, relationship estimation methods that assume homogeneity can give extremely biased results
- ► The degree of relatedness among related and unrelated sample individuals with similar ancestry are systematically inflated

Structured Populations with Distinct Ancestral Subpopulations

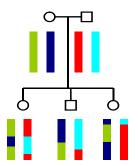
- Manichaikul A et al. (2010) propose an estimator, KING-robust, which stands for Kinship-based INference for Genome-wide association studies
- Estimates kinship coefficients in for individuals from ancestrally distinct subpopulations
- KING-robust estimates kinship coefficients for a pair of individuals by using the shared genotype counts as a measure of the genetic distance between the pair.
- Method does not require allele frequency estimates at the marker: is based on allele sharing counts for individuals
- Gives biased kinship estimates for individuals with different ancestry

Admixed Populations

- Genetic models used to identify related individuals from large scale genetic data often make simplifying assumptions about population structure – either random mating or simple structures.
- In reality, human populations do not mate at random nor are there simple endogamous subgroups.
- While GWAS have primarily examined populations of European ancestry, more recent studies involve admixed populations.
- A number of populations, including the two largest minority populations in the United States, Hispanics and African Americans, are known to have ancestral admixture of chromosomes from different continents.

Ancestry Admixture

- Consider two admixed parents, where each are admixed from different ancestral populations.
- ▶ In the picture below, positions on the chromosomes that are the same color are from the same ancestral population.



Relatedness Inference in Admixed Samples

- Thornton et al. (2012) proposed REAP (Relatedness Estimation in Admixed Populations) for relatedness inference in samples from populations with admixed ancestry
- Consider the problem of estimating relatedness in a set N of outbred individuals who are sampled from a population with admixture from K subpopulations
- Let $\mathbf{q}^s = (q_1^s, \dots, q_K^s)^T$ denote the vector of subpopulation-specific allele frequencies at SNP s, where q_k^s is the allele frequency of SNP s in subpopulation k, $1 \le k \le K$.
- ▶ Define $\mathbf{a}_i = (a_{i1}, \dots, a_{iK})^T$ to be the genome-wide ancestry vector for $i \in N$, where a_{ik} is the proportion of ancestry from subpopulation k for i, $a_{ik} \geq 0$ for all k, and $\sum_{k=1}^{K} a_{ik} = 1$.

Estimating Relatedness in an Admixed Population

- Let Y_i^s be the genotype variable for individual i, where $Y_i^s = \frac{1}{2} \times \text{(the number of alleles of type 1 at SNP } s \text{ in}$ individual i). Similarly define Y_i^s for individual j.
- \triangleright Conditional on \mathbf{q}^s , we assume alleles of an outbred individual iare independent, identically-distributed (i.i.d.) Bernoulli random variables, a modeling assumption made by other commonly-used models of population structure (Balding-Nichols model with admixture).
- We denote $\mu_i^s = E[Y_i^s | \mathbf{a}_i, \mathbf{q}^s]$ to be the expected value of Y_i^s conditional on \mathbf{q}^s and \mathbf{a}_i where

$$\mu_i^s = \mathbf{a}_i^T \mathbf{q}^s = \sum_{k=1}^K a_{ik} q_k^s,$$

▶ The variance of Y_i^s conditional on \mathbf{q}^s and \mathbf{a}_i is $.5\mu_i^s(1-\mu_i^s)$.

Estimating Kinship Coefficients: Admixed Population

- ▶ For i and j from a homogenous populations, it can be shown that $\phi_{ij} = \frac{1}{2}\rho_{Y_iY_j}$ for i and j, where $\rho_{Y_iY_j}$ is the correlation of Y_i^s and Y_j^s .
- For estimating ϕ_{ij} in structured populations with admixture, we propose to similarly calculate the correlation of Y_i^s and Y_j^s
- Propose using a correlation that is calculated conditional on the admixture ancestry proportions of i and j as well as the subpopulation allele frequencies.

Estimating Kinship Coefficients: Admixed Population

- ▶ The conditional correlation that we estimate for inference on ϕ_{ij} is $\rho_{Y_iY_j|\mathbf{a}_i,\mathbf{a}_j,\mathbf{q}^s}$, which is the correlation of Y_i^s and Y_j^s conditional on \mathbf{a}_i , \mathbf{a}_i , and \mathbf{q}^s .
- ▶ When genome-screen data is available for i and j we estimate ϕ_{ij} in the presence of population structure with admixture with the REAP estimator

$$\hat{\phi}_{ij}^{\mathcal{A}} = \frac{1}{2} \hat{\rho}_{Y_i Y_j | \mathbf{a}_i, \mathbf{a}_j, \mathbf{q}^s}$$

where

$$\hat{\rho}_{Y_iY_j|\mathbf{a}_i,\mathbf{a}_j,\mathbf{q}^s} = \frac{1}{|\mathcal{S}_{ij}|} \sum_{s \in \mathcal{S}_{ij}} \frac{(Y_i^s - \hat{\mu}_i^s)(Y_j^s - \hat{\mu}_j^s)}{\sqrt{.5\hat{\mu}_i^s(1 - \hat{\mu}_i^s)} \sqrt{.5\hat{\mu}_j^s(1 - \hat{\mu}_j^s)}},$$

Estimating IBD Sharing Probabilities: Admixed Populations

- Can also extend estimating IBD sharing probabilities in admixed populations.
- Define Z^s_{ij} as before to be an indicator for i and j sharing 0 alleles IBD at SNP s
- ▶ Can use the conditional expectation of Z_{ij}^s given $\mathbf{a}_i, \mathbf{a}_j, \mathbf{q}^s$ to obtain a method of moments estimator for δ_{ij}^0 in the the presence of admixture.
- For any pair of individuals i and j from an admixed population, we have that

$$E(Z_{ij}^{s}|\mathbf{a}_{i},\mathbf{a}_{j},\mathbf{q}^{s}) = \left[(\mu_{i}^{s})^{2} (1-\mu_{j}^{s})^{2} + (1-\mu_{i}^{s})^{2} (\mu_{j}^{s})^{2} \right] \delta_{ij}^{0}$$

Estimating IBD Sharing Probabilities: Admixed Populations

- Let S_{ij} be the set of markers in the genome screen for which both i and j have nonmissing genotype data.
- Our REAP method of moments for δ^0_{ij} in the presence of admixture is

$$\hat{\delta}_{ij}^{0^A} = \frac{\sum_{s \in \mathcal{S}_{ij}} Z_{ij}^s}{\sum_{s \in \mathcal{S}_{ij}} \left[(\hat{\mu}_i^s)^2 (1 - \hat{\mu}_j^s)^2 + (1 - \hat{\mu}_i^s)^2 (\hat{\mu}_i^s)^2 \right]}$$

Estimating IBD Sharing Probabilities: Admixed Populations

- ▶ The remaining two IBD sharing probabilities, δ^1_{ij} and δ^2_{ij} , can be written as a function of δ^0_{ij} and ϕ_{ij}
- ▶ Estimate $\delta^{1^A}_{ij}$ with $\hat{\delta}^{1^A}_{ij} = 2 2\hat{\delta}^{0^A}_{ij} 4\hat{\phi}^A_{ij}$
- ► Estimate $\delta_{ij}^{2^A}$ with $\hat{\delta}_{ij}^{2^A} = \hat{\delta}_{ij}^{0^A} + 4\hat{\phi}_{ij}^A 1$.

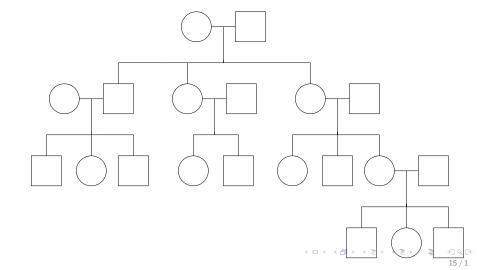
Simulation Studies: Relatedness and Population Structure

- Perform simulation studies, in which population structure and related individuals are simultaneously present
- ► The population structure settings used in the simulation studies are based on the Balding-Nichols model.
- ► For each SNP, an ancestral population allele frequency *p* was drawn from the uniform distribution on [0.1,0.9].
- ▶ We set $F_{ST} = .2$ in the Balding-Nichols model to simulate two highly divergent subpopulations.

Simulation Studies: Relatedness and Population Structure

- We consider population structure settings where individuals from an admixed population formed from two divergent subpopulations.
- Population structure setting 1 has individuals sampled from an admixed population formed from ancestral populations and where there is assortative mating.
- Population structure setting 2 has individuals sampled from an admixed population formed from ancestral populations where there is random mating
- We sample 400 individuals from 20 outbred pedigrees containing 1st, 2nd, 3rd, and 4th-degree relationships.

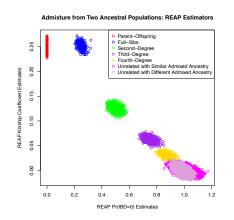
Pedigree Configuration

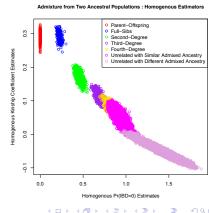


Simulation Studies: Relatedness and Population Structure

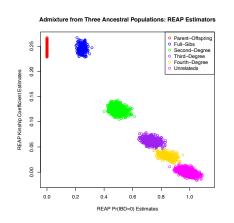
- ► For each of the two population structure settings we generate genotype data for 10,000 random SNPs.
- Genome-wide ancestry estimates used by REAP for the sample individuals were obtained by the *frappe* software program
- frappe implements an EM algorithm for simultaneously inferring each individuals ancestry proportion and allele frequencies in the ancestral populations.

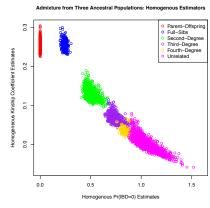
Setting 1: Admixture from Two Ancestral Populations and Assortative Mating





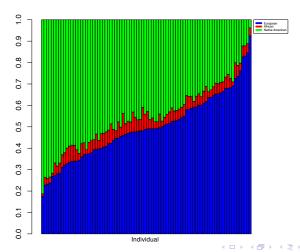
Setting 2: Admixture from Three Ancestral Populations and Random Mating

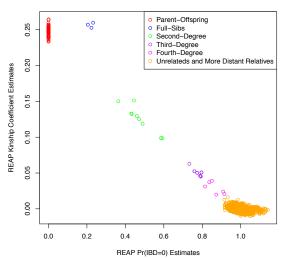




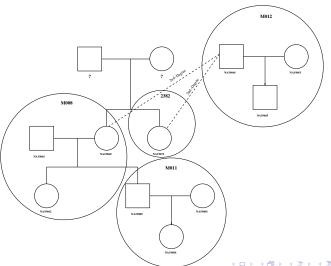
Estimating Kinship: HapMap Mex Sample

- Estimate estimating kinship coefficients and IBD sharing probabilities in the HapMap Mexicans in Los Angeles (MXL) sample of release 3 of phase III..
- ▶ Used *frappe* to estimate genome-wide ancestry for the 86 individuals in the sample
- We set the number of ancestral populations K=3
 - HapMaP YRI for African ancestry
 - HapMap CEU samples for northern and western European ancestry
 - ▶ HGDP Native American samples for Native American ancestry.





Reconstructed HapMap MXL Extended Pedigree



Women's Health Initiative

- ► The Womens Health Initiative (WHI) is a national health study focusing on strategies for preventing chronic diseases in postmenopausal women.
- ▶ A total of 161,808 women aged 50-79 yrs. old were recruited from 40 clinical centers in the US between 1993 and 1998.
- ▶ The WHI cohort included
 - Two clinical trials of postmenopausal hormone therapy (estrogen alone and estrogen plus progestin)
 - A clinical trial of calcium and vitamin D supplements, and a dietary modification trial.

Genetic analysis of WHI-SHARe Minority Cohort

- Minority populations have largely been underrepresented in genetic studies despite bearing a disproportionately high burden for disease.
- WHI study opens up tremendous new possibilities for the identification of genetic risk factors associated with a number of clinical outcomes in the two largest minority populations in the U.S.
- ► The WHI SNP Health Association Resource (SHARe) minority cohort includes 8421 self-identified African American women from and 3587 self-identified Hispanic women
- ▶ 909,622 single nucleotide polymorphisms (SNPs) across the genome

Ancestry Estimation: WHI-SHARe data

- Used frappe to estimate genome-wide ancestry of every individual in the sample
- We set the number of ancestral populations K=4
 - HapMaP YRI for African ancestry
 - HapMap CEU samples for northern and western European ancestry
 - HGDP Native American samples for Native American ancestry.
 - HGDP East Asian samples for East Asian Ancestry

Relatedness Inference in WHI-SHARe

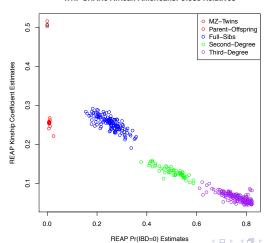
- No available genealogical information for the WHI-SHARe sample
- Used REAP to estimated relationships for all possible pairs:

$$\binom{12008}{2} = 7,209,028$$

 Obtained estimates for kinship coefficients and IBD sharing probabilities

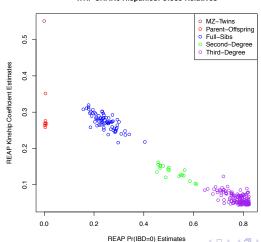
WHI-SHARe African Americans

WHI-SHARe African Americans: Close Relatives



WHI-SHARe Hispanics

WHI-SHARe Hispanics: Close Relatives



Relatedness Inference in WHI-SHARe

- Also used the PLINK software (Purcell et al., 2007) method of moments kinship coefficient estimator: 8,932 pairs are identified to be either first or second degree relatives
- Our REAP kinship estimator that adjusts for individual specific ancestry identifies 344 individuals with kinship coefficients that are consistent with either first or second degree relatives

Relatedness Inference in WHI-SHARe

- ▶ Interestingly, there are individuals who are identified as second- and third-degree relative pairs by REAP but who have a different self-reported race/ethnicity, e.g. one individual is a self-report African American and the other is a self-report Hispanic.
- An advantage of the REAP approach is that robust relatedness estimates can be obtained for all individuals, even for individuals who have different admixed ancestry distributions and self-identify in different ethnic or nationality groups.

References

- Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM (2010) Robust relationship inference in genome-wide association studies. *Bioinformatics* 26, 2867-2873.
- Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC (2007). PLINK: a toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 81, 559-575.
- ► Thornton T, Tang H, Hoffman TJ, Ochs-Balcom HM, Baan BJ, and Risch N (2012) Estimating Kinship in Admixed Populations Am. J. Hum. Genet. **91**