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Estimating Relatedness in Homogenous Populations

Incomplete Genealogy

» Many statistical methods for genetic data, e.g. linkage and
association methods, are based on assumptions of
independent samples or samples with known relationships.
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Estimating Relatedness in Homogenous Populations

Incomplete Genealogy

» Misspecified and cryptic relationships can invalidate many of
these methods.
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Identifying Relative Pairs

> In principle, could determine the relationship between two
individuals by simply looking at the percentage of IBD sharing
in the genome for the two
» parent-offspring sharing: 50% of genome
» sibs: 50% of genome (on average)
» avuncular: 25% of genome (on average)

> However, we do not directly observe IBD sharing. We only
observe DNA sequences.
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Genome Screen Data to ldentify Relative Pairs

>

It is now common to have genome screen data on hundreds of
thousands of genetic markers.

Genome screen data can be used to infer genealogical
relationships.

Example: Suppose we are interested in identifying the
relationship between two individuals and assume for now that
haplotype phase is known.

Observed sequence on a chromosome from individual 1:
...TATACGTGCACCTGGATTACAGATTACAGATTACAGATTACATTGCATCGATCGAA...
Observed sequence on a chromosome from from individual 2:
...GGATCCTGAACCTAGATTACAGATTACAGATTACAGATTACAATGCTTCGATGGAC...

If haplotype phase is known, blocks of identical DNA
sequences can be used to infer relationships.
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Genome Screen Data to ldentify Relative Pairs

» Stanley F Nelson (UCLA Department of Human Genetics):
IBD sharing between relatives: rapid drop in number of blocks
yet size drops asymptotically:

vV vy vy VY VY Y

1st cousins: n=20-30, average size~20-30mb
2nd cousins: n=>5-8, average size~20mb
3rd cousins: n=1-3, average size ~18mb
4th cousin: n=0-1, average size ~16mb
5th cousins: n=0-1, average size ~14mb
6th cousins: n=0-1, average size~12mb
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Estimating Relatedness in Homogenous Populations

Hidden Markov Model for Identifying Relative Pairs

» McPeek and Sun (2000) developed approximate likelihood
method to identify relative pairs for close relationships

» Stankovich et al. (2005) extended method for more distantly
related pairs (degree 13: 6th cousin). Software is GBIRP

» Uses a 2-state Hidden Markov model for IBD status (yes/no)
to approximate the likelihood

» Likelihood is a function of the distance between genetic
markers, frequency of alleles between the markers, and
relationship of individuals
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Hidden Markov Model for Identifying Relative Pairs

» Find pairwise relationship that maximizes the log likelihood
ratio for the observed genome screen data (g1, g2) over
various types of relationships (up to 6th cousins)

P(g1, g2|related)
P(g1, g2|unrelated)

log

» High power to identify relationships up to degree eight (third
cousins once removed)

» Typical error in degree for relationship < eight is 1
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GBIRP Results for Known Relationships

Table: GBIRP MS Pairs

ID1 1D2 Truth Estimate

20001 30001 2 2
23908 24501 3 3
5809 3701 3 3
45101 45201 4 4
6807 9603 5 6
4801 3701 5 5
8201 42204 5 6
7202 7804 5 7
31001 7603 6 6
4801 5809 6 6
6802 21006 6 6
30602 20503 7 7
30603 9803 7 7
133505 30103 7 9
32204 1303 8 7
33404 4204 8 8
23804 1303 8 8
30501 7037 9 9
2901 602 9 0
6202 602 9 0
8003 1704 10 ]
4902 42204 10 ]
20503 1203 11 9
24001 32801 11 12 o = = =
30501 7902 13 0 a
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IBD Sharing Probabilities

» IBD sharing probabilities are another measure of relatedness
for pairs of individuals

» For any pair of outbred individuals i/ and j, let d; be the
probability that i and j share k alleles IBD at a locus where k

is0, 1, or 2.

IBD Sharing Probabilites for Outbreds
Relationship 9 | 41 | do
Parent-Offspring 0|10
Full Siblings AR
Half Siblings 03| 3
Uncle-Nephew 0o i]3
First Cousins 0 ; %
Double First Cousins 1—16 1% 1%
Second Cousins 0 Tls %
Unrelated 0|01
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Estimating IBD Sharing Probabilities: EM Algorithm

> |t is often not be possible to determine exactly how many
alleles a pair share IBD.

» Can estimate IBD sharing probabiliting using genetic marker
data across the genome.

» Choi, Wijsman, and Weir (2009) proposed using an EM
algorithm to estimate the IBD probabilities for this problem.
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Estimating IBD Sharing Probabilities: EM Algorithm

» Suppose the data consists of N genetic markers accross the
genome

» Assume for now that at we observe IBD sharing at each
marker for individuals / and j in the sample

> Let Xy be the number of markers for which i and j share k
alleles IBD, and let let dx be the probability that i and j share
k alleles IBD at a merek where kis 0, 1, or 2..

> If the IBD sharing process at the markers is observed, what
would the likelihood function be?
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Estimating IBD Sharing Probabilities: EM Algorithm

v

The likelihood function for the IBD sharing process would
have the following multinomial distribution

NI

Xo X1 X
S ATAL |5 05 15 2

L(Xo, X1, X2) =
where X = Zivzl I { i and j share k alleles IBD at marker r}

Could estimate the d,'s using the Xi's, which are the
sufficient statistics: The MLE is 0, = % for k=0,1,2.

The IBD process, however is not observed.

v

v

v

What is the complete data and what is the observed data?

13



Estimating Relatedness in Homogenous Populations

Expectation Step of EM Algorithm

» The X values are the unobserved complete data.

» The observed data is the genotype data for individuals i and j
at the N markers, and the Xy values are the missing data

» The E step of the EM algorithm calculates the expected value
of Xj conditioned on the observed genotype data.

» Remember that initial values for the d,’s need to be given for
the EM algorithm.

» Let 69 = (89,69, 69) be the initial values.

» Let G = (Gy,... Gy, ... Gp), where G, = (Gj,, G},) is the
genotype data at marker r for i and j.
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Expectation Step of EM Algorithm
> Xp = Zivzl I{ i and j share 2 alleles IBD at marker r}

» E[X:|G,6°] =
N
Z E [1{ i and j share 2 alleles IBD at marker r} |G,(50]
r=1
N
= Z E [1{ i and j share 2 alleles IBD at marker r} \G,,éo}
r=1

I
™=

P (i and j share 2 alleles IBD at marker r|G,,5O)

\
Il
._.

P( i and j share 2 alleles IBD at marker r,G,\éo)
P (G[5°)

I
NE

\
Il
._.
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Expectation Step of EM Algorithm

» The numerator of the summand is
P( i and j share 2 alleles IBD at marker r, G,|50)

= P (G| i and j share 2 alleles IBD at marker r,§°%) x

P( i and j share 2 alleles IBD at marker r\éo)
=P (G,| i and j share 2 alleles IBD at marker r, 50) 69

» P(G,| i and j share 2 alleles IBD at marker r) will be based
on the population allele frequency distribution at marker r.

16
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Expectation Step of EM Algorithm

>

For simplicity, assume that marker r is a SNP with the 2
allelic types labeled “0" and "1™

Let p, be the frequency of allelic type 1 in the population at
marker k, where 0 < p, < 1.

If the genotype of i is (1,1) and the genotype of j is (1,1) at
marker r, then

P(G,| i and j share 2 alleles IBD at marker r) = p? (if HWE
is assumed).

What is the probability if the genotype of i is (1,2) and the
genotype of j is (2,2) at marker r?

What is the probability if the genotype of i is (1,2) and the
genotype of j is (1,2) at marker r?
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Expectation Step of EM Algorithm

» From these probabilities, we can obtain E [X2|G,5°] =

Z P (i and j share 2 alleles IBD at marker r,G,|6°)
- P(G/2%)

» Can similarly obtain E [X1|G,60] and E [X0|G,6O] , Where

N

X1 = Z I{ i and j share 1 alleles IBD at marker r}
r=1
and
N
Xo = Z I{ i and j share O alleles IBD at marker r}
r=1
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Maximization Step of EM Algorithm

» The M step involves maximizing the expected value of the
log-likelihood (obtained in the E step) with respect to the 0y

parameters.
» The MLE is:
PN E[X|G,8°
> 00 = E[R%[G.0FEGIG. 3 TEPGIGC.]
PN E[X|G,8°
> 01 = E[X;]6, 0 FED G FEPGIG,3]
PN E[X;|G,8°
> 02 = F[X;]G 0 FE GO FEPGIG.3]

» The next step is to set §! = $ and then return to the E step

of the algorithm.

» Continue iterating between the E and M step until the 5

values converge.
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Estimating IBD Sharing Probabilities: Method of
Moments

» Purcell et al. (2007) proposed a method of moments
estimator for IBD sharing probabilities

» Estimate IBD sharing probabilities based on IBS sharing for
pairs of individuals

» Implements the IBD sharing method of moments estimator in
their software package PLINK

20/1



Estimating Relatedness in Homogenous Populations

Estimating Kinship Coefficients

» Kinship coefficients can also be used to quantify relationships

between two individuals.

Table: Kinship Coefficients

Relationship 10}

Parent-Offspring 1/4
Full Siblings 1/4
Half Siblings 1/8
Uncle-nephew 1/8
First Cousins 1/16
Double First Cousins  1/8
Second Cousins 1/64
unrelated 0

> Note that ¢ = 16, + 16,
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Estimating Kinship Coefficients

>

Thornton and McPeek (2010) propose a method to estimate
kinship coefficients using genetic marker data

Consider once again a marker r with 2 allelic types labeled
HO” and “1”
Let p, be the frequency of allelic type 1, where 0 < p, < 1.

Consider two individuals 7 and j. For individual i, let Y; = %
B

X (the number of alleles of type 1 in individual i at marker r).

So the value of Y} is 0, % or 1. Similarly define Y;, for
individual j.

It can be shown that Cov(Yj,,Y},) = pr(1 — pr)ojj, where ¢
is the kinship coefficient for i and j.

Cov(Yi,, Y}, )

Rearrange terms to see that ¢;; = o)
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Estimating Kinship Coefficients

» This relationship will hold for markers across the genome (with
the allele frequency distribution changing for each marker).

» Can use data across the genome to estimate kinship
coefficients for pairs of individuals

» Let N be the total number of markers in the data.

» For any pair of individuals i and j, can estimate ¢;; with

, — br)(Y), — pr)

Bij =
/ 1 - Pr)

IIMZ

where p, is an allele frequency estimate for the type 1 allele at
marker r
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Estimating Kinships Using GAW 14 COGA Data

» The Collaborative Study of the Genetics of Alcoholism
(COGA) provided genome screen data for locating regions on
the genome that influence susceptibility to alcoholism.

> There were a total of 1,009 individuals from 143 pedigrees
with each pedigree containing at least 3 affected individuals.
Individuals labeled as "white, non-Hispanic” were considered.

» 10K SNP array (10,081 SNPs) on 22 autosomal chromosomes

» Estimated kinship coefficients using genome-screen data
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Estimating Kinships Using COGA Data
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Estimating Kinships Using COGA Data

» From the given pedigrees, two pairs of individuals that should
have a kinship coefficient of .25 appear to be unrelated
(estimated kinship coefficients of -0.006 and -0.003,
respectively)

» Two pairs of individuals that should have a kinship coefficient
of .125 appear to be unrelated (estimated kinship coefficients
of -0.003 and 0.002, respectively)

> 9 pairs of "unrelated” individuals have a kinship coefficient
around .125

> 2 pairs of "unrelated” individual have a kinship coefficient
around .25



Estimating Relatedness in Homogenous Populations

References

» Choi Y, Wijsman EM, Weir BS (2009). Case-control
association testing in the presence of unknown relationships.
Genet. Epi. 33, 668-678.

» McPeek MS and Sun L (2000). Statistical Tests for Detection
of Misspecified Relationships by Use of Genome-Screen Data,
Am. J. Hum. Genet. 66, 1076-1094.

» Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR,
Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham
PC (2007). PLINK: a toolset for whole-genome association

and population-based linkage analysis. Am. J. Hum. Genet.
81, 559-575.



Estimating Relatedness in Homogenous Populations

References

» Stankovich J, Bahlo M, Rubio JP, Wilkinson CR, Thomson R,
Banks A, Ring M, Foote SJ, Speed TP (2005). Identifying

nineteenth century genealogical links from genotypes. Hum.
Genet. 117, 188-199

» Thornton T, McPeek MS (2010). ROADTRIPS: Case-Control
Association Testing with Partially or Completely Unknown

Population and Pedigree Structure. Am. J. Hum. Genet. 86,
172-184.



- |
Estimating Relatedness in Populations with Admixed Ancestry

Estimating Relatedness in Populations with
Admixed Ancestry

Timothy Thornton and Katie Kerr

Summer Institute in Statistical Genetics 2014

Module 10
Lecture 7: Part Il

1/1



Estimating Relatedness in Populations with Admixed Ancestry

Relatedness Inference in Structured Populations

» Popular algorithms for relationship inference are based on a
strong assumption of population homogeneity

» This assumption is often untenable. GWAS often have cryptic
population structure (or ancestry differences among the
sample individuals)

> In samples with population structure, relationship estimation
methods that assume homogeneity can give extremely biased
results

» The degree of relatedness among related and unrelated sample
individuals with similar ancestry are systematically inflated
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Structured Populations with Distinct Ancestral
Subpopulations

>

Manichaikul A et al. (2010) propose an estimator,
KING-robust, which stands for Kinship-based INference for
Genome-wide association studies

Estimates kinship coefficients in for individuals from
ancestrally distinct subpopulations

KING-robust estimates kinship coefficients for a pair of
individuals by using the shared genotype counts as a measure
of the genetic distance between the pair.

Method does not require allele frequency estimates at the
marker: is based on allele sharing counts for individuals
Gives biased kinship estimates for individuals with different
ancestry
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Admixed Populations

» Genetic models used to identify related individuals from large
scale genetic data often make simplifying assumptions about
population structure — either random mating or simple
structures.

> In reality, human populations do not mate at random nor are
there simple endogamous subgroups.

> While GWAS have primarily examined populations of
European ancestry, more recent studies involve admixed
populations.

» A number of populations, including the two largest minority
populations in the United States, Hispanics and African
Americans, are known to have ancestral admixture of
chromosomes from different continents.
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Ancestry Admixture

» Consider two admixed parents, where each are admixed from
different ancestral populations.

> In the picture below, positions on the chromosomes that are
the same color are from the same ancestral population.

[l
rﬁ__é
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Relatedness Inference in Admixed Samples

» Thornton et al. (2012) proposed REAP (Relatedness
Estimation in Admixed Populations) for relatedness inference
in samples from populations with admixed ancestry

» Consider the problem of estimating relatedness in a set N of
outbred individuals who are sampled from a population with
admixture from K subpopulations

> Let ° = (qf,...,q%) T denote the vector of
subpopulation-specific allele frequencies at SNP s, where g; is
the allele frequency of SNP s in subpopulation k, 1 < k < K.

» Define a; = (aj1, ..., a,-K)T to be the genome-wide ancestry
vector for i € N, where aj is the proportion of ancestry from
subpopulation k for i, aj > 0 for all k, and Eszl aj = 1.
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Estimating Relatedness in an Admixed Population

> Let Y be the genotype variable for individual i, where
Y? = % X (the number of alleles of type 1 at SNP s in
individual 7). Similarly define Yjs for individual .

» Conditional on g°, we assume alleles of an outbred individual i
are independent, identically-distributed (i.i.d.) Bernoulli
random variables , a modeling assumption made by other
commonly-used models of population structure
(Balding-Nichols model with admixture).

» We denote pif = E[Y?|aj, q°] to be the expected value of Y7

conditional on q° and a; where

K
s _ T s __ s
pi =a; q° = E ajkqy,
k=1

» The variance of Y7 conditional on q° and a; is, .5u7(1 — u3).
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Estimating Kinship Coefficients: Admixed
Population

» For j and j from a homogenous populations, it can be shown
that ¢ = %pyl.yj for i and j , where py,y; is the correlation of
Y? and Yjs.

» For estimating ¢;; in structured populations with admixture,
we propose to similarly calculate the correlation of Y and Yjs

» Propose using a correlation that is calculated conditional on
the admixture ancestry proportions of i and j as well as the
subpopulation allele frequencies.
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Estimating Kinship Coefficients: Admixed
Population
» The conditional correlation that we estimate for inference on
®ij IS Py, Yia; a;,q¢» Which is the correlation of Y7 and Y7
conditional on a;, a;, and g°.
» When genome-screen data is available for i and j we estimate
@ij in the presence of population structure with admixture
with the REAP estimator

N 1
A ~
¢U = EPY,-YJ-\a,-,aj,qS
where
5 1 (Y7 = ai) (Y7 — )
YiYjlajaj,q° = Tg. ~ = ~ ~oy
1Sl i /BRs — pg)y/Sas(L - )




Estimating Relatedness in Populations with Admixed Ancestry

Estimating IBD Sharing Probabilities: Admixed
Populations

» Can also extend estimating IBD sharing probabilities in
admixed populations.

» Define Z; as before to be an indicator for i and j sharing 0O
alleles IBD at SNP s

» Can use the conditional expectation of Z,-j given a;,a;, q° to
obtain a method of moments estimator for (58- in the the
presence of admixture.

» For any pair of individuals i and j from an admixed
population,we have that

E(Zlai,aj,q°) = [(u)*(1 — p3)? + (1 — p)?(13)?] 67
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Estimating IBD Sharing Probabilities: Admixed
Populations

> Let Sj; be the set of markers in the genome screen for which
both i and j have nonmissing genotype data.

» Our REAP method of moments for 52- in the presence of
admixture is

S
204 ZSES,'J' ZI_]

Sees, | (AP = )7 + (1 - a2z
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Estimating IBD Sharing Probabilities: Admixed
Populations

» The remaining two IBD sharing probabilities, 5,-11- and 53 can
be written as a function of (53- and ¢;

» Estimate 5,.3-A with Sb-A =2- 232-A - 4%’

> Estimate 62" with 62" = §%" + 444 — 1.

12/1
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Simulation Studies: Relatedness and Population
Structure

» Perform simulation studies, in which population structure and
related individuals are simultaneously present

» The population structure settings used in the simulation
studies are based on the Balding-Nichols model.

» For each SNP, an ancestral population allele frequency p was
drawn from the uniform distribution on [0.1,0.9].

» We set FsT = .2 in the Balding-Nichols model to simulate
two highly divergent subpopulations.

13



Estimating Relatedness in Populations with Admixed Ancestry

Simulation Studies: Relatedness and Population
Structure

» We consider population structure settings where individuals
from an admixed population formed from two divergent
subpopulations.

» Population structure setting 1 has individuals sampled from an
admixed population formed from ancestral populations and
where there is assortative mating.

» Population structure setting 2 has individuals sampled from an
admixed population formed from ancestral populations where
there is random mating

» We sample 400 individuals from 20 outbred pedigrees
containing 1st, 2nd, 3rd, and 4th-degree relationships.

14
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Pedigree Configuration
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Simulation Studies: Relatedness and Population
Structure

» For each of the two population structure settings we generate
genotype data for 10,000 random SNPs.

» Genome-wide ancestry estimates used by REAP for the sample
individuals were obtained by the frappe software program

> frappe implements an EM algorithm for simultaneously
inferring each individuals ancestry proportion and allele
frequencies in the ancestral populations.

16
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Setting 1: Admixture from Two Ancestral
Populations and Assortative Mating

from Two i REAP il Admixture from Two Ancestral Populations : Homogenous Estimators
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Setting 2: Admixture from Three Ancestral
Populations and Random Mating

from Three i REAP i Admixture from Three Ancestral Populations: Homogenous Estimators
o Parent-Offspring 248 @ o Parent-Offspring
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Estimating Kinship: HapMap Mex Sample

» Estimate estimating kinship coefficients and IBD sharing
probabilities in the HapMap Mexicans in Los Angeles (MXL)
sample of release 3 of phase Ill..

> Used frappe to estimate genome-wide ancestry for the 86
individuals in the sample

> We set the number of ancestral populations K =3

» HapMaP YRI for African ancestry
» HapMap CEU samples for northern and western European

ancestry

» HGDP Native American samples for Native American ancestry.
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HapMap MXL Estimated Ancestry
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Reconstructed HapMap MXL Extended Pedigree

Y
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Women’s Health Initiative

» The Womens Health Initiative (WHI) is a national health
study focusing on strategies for preventing chronic diseases in
postmenopausal women.

> A total of 161,808 women aged 50-79 yrs. old were recruited
from 40 clinical centers in the US between 1993 and 1998.
» The WHI cohort included
» Two clinical trials of postmenopausal hormone therapy
(estrogen alone and estrogen plus progestin)
» A clinical trial of calcium and vitamin D supplements, and a
dietary modification trial.
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Genetic analysis of WHI-SHARe Minority Cohort

» Minority populations have largely been underrepresented in
genetic studies despite bearing a disproportionately high
burden for disease.

» WHI study opens up tremendous new possibilities for the
identification of genetic risk factors associated with a number
of clinical outcomes in the two largest minority populations in
the U.S.

» The WHI SNP Health Association Resource (SHARe)
minority cohort includes 8421 self-identified African American
women from and 3587 self-identified Hispanic women

» 909,622 single nucleotide polymorphisms (SNPs) across the
genome
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Ancestry Estimation: WHI-SHARe data

> Used frappe to estimate genome-wide ancestry of every
individual in the sample
» We set the number of ancestral populations K = 4

» HapMaP YRI for African ancestry
» HapMap CEU samples for northern and western European
ancestry

» HGDP Native American samples for Native American ancestry.

» HGDP East Asian samples for East Asian Ancestry
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Relatedness Inference in WHI-SHARe

» No available genealogical information for the WHI-SHARe
sample

> Used REAP to estimated relationships for all possible pairs:

(12008) = 7,209,028
2
» Obtained estimates for kinship coefficients and IBD sharing

probabilities
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WHI-SHARe African Americans

WHI-SHARe African Americans: Close Relatives

o g © MZ-Twins

o 7 © Parent-Offspring
o Full-Sibs
© Second-Degree
© Third-Degree

<

o

@

o

REAP Kinship Coefficient Estimates
0.2
o

0.1

0.0 0.2 0.4 0.6 0.8

REAP Pr(IBD=0) Estimates (=} = = = =




Estimating Relatedness in Populations with Admixed Ancestry

WHI-SHARe Hispanics

WHI-SHARe Hispanics: Close Relatives
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Relatedness Inference in WHI-SHARe

» Also used the PLINK software (Purcell et al., 2007) method
of moments kinship coefficient estimator: 8,932 pairs are
identified to be either first or second degree relatives

» Our REAP kinship estimator that adjusts for individual specific
ancestry identifies 344 individuals with kinship coefficients
that are consistent with either first or second degree relatives
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Relatedness Inference in WHI-SHARe

> Interestingly, there are individuals who are identified as
second- and third-degree relative pairs by REAP but who have
a different self-reported race/ethnicity, e.g. one individual is a
self-report African American and the other is a self-report
Hispanic.

» An advantage of the REAP approach is that robust relatedness
estimates can be obtained for all individuals, even for
individuals who have different admixed ancestry distributions
and self-identify in different ethnic or nationality groups.
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