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Introduction to Quantitative Trait Mapping

I In the previous session, we gave an overview of association
testing methods when the trait of interest is binary (e.g. 1/0,
affected/unaffected, dead/alive),

I Phenotypes of interest are often quantitative, and in this
session we focus on the topic of genetic association testing
with quantitative traits.

I The field of quantitative genetics is the study of the
inheritance of continuously measured traits and their
mechanisms.

I Vast amounts of literature on this topic!
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Introduction to Quantitative Trait Mapping

I Quantitative trait loci (QTL) mapping involves identifying
genetic loci that influence the phenotypic variation of a
quantitative trait.

I QTL mapping is commonly conducted with GWAS using
common variants, such as variants with minor allele
frequencies ≥ 1%− 5%

I There generally is no simple Mendelian basis for variation of
quantitative traits

I Some quantitative traits can be largely influenced by a single
gene as well as by environmental factors

3 / 41



Association Testing with Quantitative Traits: Common and Rare Variants

Introduction to Quantitative Trait Mapping

I Influences on a quantitative trait can also be due to a number
of genes with similar (or differing) effects

I Many quantitative traits of interest are complex where
phenotypic variation is due to a combination of both multiple
genes and environmental factors

I Examples: Blood pressure, cholesterol levels, IQ, height,
weight, etc.

4 / 41



Association Testing with Quantitative Traits: Common and Rare Variants

Quantitative Genetic Model

I The classical quantitative genetics model introduced by
Ronald Fisher (1918) is Y = G + E , where Y is the
phenotypic value, G is the genetic value, and E is the
environmental deviation.

I G is the combination of all genetic loci that influence the
phenotypic value and E consists of all non-genetic factors that
influence the phenotype

I The mean environmental deviation E is generally taken to be
0 so that the mean genotypic value is equal to the mean
phenotypic value, i.e., E (Y ) = E (G )

5 / 41



Association Testing with Quantitative Traits: Common and Rare Variants

Quantitative Genetic Model

I Consider a single locus. Fisher modeled the genotypic value G
with a linear regression model (least squares) where the
genotypic value can be partitioned into an additive component
(A) and deviations from additivity as a result of dominance
(D), where

G = A + D
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Linear Regression Model for Genetic Values

Falconer model for single biallelic QTL 

Var (X) = Regression Variance + Residual Variance 
 = Additive Variance + Dominance Variance 
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Components of Genetic Variance

I From the properties of least squares, the residuals are
orthogonal to the fitted values, and thus Cov(A,D) = 0. So
we have that

Var(G ) = Var(A) + Var(D)

or
σ2G = σ2A + σ2D

I σ2A is the additive genetic variance. It is the genetic
variance associated with the average additive effects of alleles

I σ2D is the dominance genetic variance. It is the genetic
variance associated with the dominance effects.
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Heritability
I The heritability of a trait is written in terms of the

components of variances of the trait.
I Remember that Y = G + E = A + D + E
I The following ratio of variance components

h2 =
σ2A
σ2Y

is defined to be the narrow-sense heritability (or simply
heritability)

I h2 is the proportion of the total phenotypic variance that is
due to additive effects.

I Heritability can also be viewed as the extent to which
phenotypes are determined by the alleles transmitted from the
parents.
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Heritability

I The broad-sense heritability is defined to be

H2 =
σ2G
σ2Y

I H2 is the proportion of the total phenotypic variance that is
due to all genetic effects (additive and dominance)

I There are a number of methods for heritability estimation of a
trait.

I Module 12 (Mixed Models in Quantitative Genetics) and
Module 17 (Human Complex Traits) cover the topic of
heritability in more detail.
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QTL Mapping

I For traits that are heritable, i.e., traits with a non-negligible
genetic component that contributes to phenotypic variability,
identifying (or mapping) QLT that influence the trait is often
of interest.

I Linear regression models are commonly used for QTL mapping

I Linear regression models will often include a single genetic
marker (e.g., a SNP) as predictor in the model, in addition to
other relevant covariates (such as age, sex, etc.), with the
quantitative phenotype as the response
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Linear regression with SNPs
Many analyses fit the ‘additive model’

y = β0 + β ×#minor alleles
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Linear regression, with SNPs
An alternative is the ‘dominant model’;

y = β0 + β × (G 6= AA)
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Linear regression, with SNPs
or the ‘recessive model’;

y = β0 + β × (G == AA)

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

AA Aa aa

ch
ol

es
te

ro
l

β

0 0 1

14 / 41



Association Testing with Quantitative Traits: Common and Rare Variants

Linear regression, with SNPs
Finally, the ‘two degrees of freedom model’;

y = β0 + βAa × (G == Aa) + βaa × (G == aa)

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

AA Aa aa

ch
ol

es
te

ro
l

0 1 0
0 0 1

βAa
βaa

15 / 41



Association Testing with Quantitative Traits: Common and Rare Variants

Additive Genetic Model

I Most GWAS perform single SNP association testing with
linear regression assuming an additive model.
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Additive Genetic Model

I The additive linear regression model also has a nice
interpretation, as we saw from Fisher’s classical quantitative
trait model!

I The coefficient of determination (r2) of an additive linear
regression model gives an estimate of the proportion of
phenotypic variation that is explained by the SNP (or SNPs)
in the model, e.g., the ”SNP heritability”
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Additive Genetic Model

I Consider the following additive model for association testing
with a quantitative trait and a SNP with alleles A and a:

Y = β0 + β1X + ε

where X is the number of copies of the reference allele A.

I What would your interpretation of ε be for this particular
model?
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Association Testing with Additive Model

Y = β0 + β1X + ε

I Two test statistics for H0 : β1 = 0 versus Ha : β1 6= 0

T =
β̂1√

var(β̂1)
∼ tN−2 ≈ N(0, 1) for large N

T 2 =
β̂21

var(β̂1)
∼ F1,N−2 ≈ χ2

1 for large N

where

var(β̂1) =
σ2ε
SXX

and SXX is the corrected sum of squares for the Xi ’s
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Statistical Power for Detecting QTL

Y = β0 + β1X + ε

I We can also calculate the power for detecting a QTL for a
given effect size β1 for a SNP.

I For simplicity, assume that Y has been a standardized so that
with σ2Y = 1.

I Let p be the frequency of the A allele in the population

σ2Y = β21σ
2
X + σ2ε = 2p(1− p)β21 + σ2ε

I Let h2s = 2p(1− p)β21 , so we have σ2Y = h2s + σ2ε
I Interpret h2s (note that we assume that trait is standardized

such that σ2Y = 1)
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Statistical Power for Detecting QTL

I Also note that σ2ε = 1− h2s , so we can write Var(β̂1) as the
following:

var(β̂1) =
σ2ε
SXX

≈ σ2ε
N (2p(1− p))

=
1− h2s

2Np(1− p)

I To calculate power of the test statistic T 2 for a given sample
size N, we need to first obtain the expected value of the
non-centrality parameter λ of the chi-squared (χ2) distribution
which is the expected value of the test statistic T squared:

λ = [E (T )]2 ≈ β21
var(β̂1)

=
Nh2s

1− h2s

since h2s = 2p(1− p)β21
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Required Sample Size for Power

I Can also obtain the required sample size given type-I error α
and power 1− β, where the type–II error is β :

N =
1− h2s
h2s

(
z(1−α/2) + z(1−β)

)2
where z(1−α/2) and z(1−β) are the (1− α/2)th and (1− β)th
quantiles, respectively, for the standard normal distribution.
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Statistical Power for Detecting QTL
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Genetic Power Calculator (PGC) 
http://pngu.mgh.harvard.edu/~purcell/gpc/ 

23 
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Missing Heritability

• !"#$%='(A1

• D&&06-%1.T01%+(0%-F8.6+??F%1:+??
– >.10+10C%<a%mI4I%-'%mI4d

– h*+,-.-+-./0%-(+.-1C%n%/+(%0E8?+.,0;%
ooIn

 

Disease Number 
of loci 

Percent of Heritability 
Measure Explained 

Heritability  
Measure 

Age-related macular 
degeneration 

5 50% Sibling recurrence 
risk 

Crohn’s disease 32 20% Genetic risk 
(liability) 

Systemic lupus 
erythematosus 

6 15% Sibling recurrence 
risk 

Type 2 diabetes 18 6% Sibling recurrence 
risk 

HDL cholesterol 7 5.2%  Phenotypic 
variance 

Height 40 5% Phenotypic 
variance 

Early onset myocardial 
infarction 

9 2.8% Phenotypic 
variance 

Fasting glucose 4 1.5% Phenotypic 
variance 
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!0,0-.6%2'=0(%O+?6*?+-'(%H$7+*,%2*(60??M
7--8CVV8,B*4:B747+(/+(;40;*Vm8*(60??VB86V

26 / 41



Association Testing with Quantitative Traits: Common and Rare Variants

LD Mapping of QTL
I For GWAS, the QTL generally will not be genotyped in a

study

#$%&'()*)+,$-$./$,0**********************#$%&'()*1$2)+,$-$./$,0

Q1           M1

Q2           M2

Q1           M2

Q2           M1

Q1           M1

Q2           M2

Q1           M2

Q2           M1

Q1           M1

Q1           M1

Q2           M2

Q2           M2

Q1           M1

Q2           M2

Q1           M1

Q2           M2
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LD Mapping of QTL

Linkage disequilibrium around an 
ancestral mutation 

[Ardlie et al. 2002] 
5 
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LD Mapping of QTL

I r2 = LD correlation between QTL and genotyped SNP

I Proportion of variance of the trait explained at a SNP ≈ r2h2s
I Required sample size for detection is

N ≈ 1− r2h2s
r2h2s

(
z(1−α/2) + z(1−β)

)2
I Power of LD mapping depends on the experimental sample

size, variance explained by the causal variant and LD with a
genotyped SNP
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Rare Variants and Sequencing Studies

I The uncovered variants from GWAS have largely been of small
effect and explain only a small fraction of trait heritability.

I Rare variants, defined here as variants with minor allele
frequencies less than 1%− 5%, likely play a significant role in
many complex traits

I Some of the missing heritability not explained by the common
variants identified through GWAS potentially can be explained
by causal rare variants
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Uncovering Rare Variants through Sequencing

I Detecting rare variant associations from GWAS data is
difficult due to rare variants having low LD with common
variants SNP genotyping arrays

I Advancements in high-throughput sequencing technologies
allow for rare variants to be identified from sequence data

I Whole-genome and whole-exome sequencing studies are now
routinely conducted for the identification of rare-variants that
are associated with complex traits.
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Association Testing with Rare Variants

I The single-variant association tests previously discussed have
essentially no power for detecting associations with rare
variants due to their low frequencies.

I A popular strategy for detecting rare variant associations from
sequencing data is to jointly consider all rare variants in a
genetic region or gene in the association analysis.
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Association Testing with Rare Variants

I Consider a sample with n individuals with quantitative
phenotype data available and that have been sequenced in a
genetic region with m variant sites.

I For individual i in the sample, let yi denote the quantitative
trait value for individual i in the sample.

I Let Gi = (gi1, . . . , gim) denote the genotypes for individual i
at the m variant sites where gij takes values of 0, 1, or 2
according to the minor allele count at the j-th variant site.

I Most association methods for rare variants from sequencing
data can be classified into two groups: burden association
tests and kernel association tests
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Burden Association Tests for Rare Variants

I Burden tests aggregate all rare variants across a genetic
region into a single value for each individual.

I Weights for the m variant sites, w1, . . . ,wm, can also be used:

I variant sites can all be given the same weight
I weighting can be done according to minor allele frequency
I weights can be assigned based on other features of the

variants, such as functionality.
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Burden Association Tests for Rare Variants

I A general linear regression model for burden tests is:

yi = β0 + β1

m∑
j=1

wjgij + εi

I A sample individual’s aggregate value across a genetic region
into a single value,

∑m
j=1 wjgij , which can be viewed as the

individuals genetic burden score.

I Association of phenotype and burden scores (or the
variant-sum across the region) can be obtained by testing the
null hypothesis H0 : β1 = 0 versus HA : β1 6= 0 using a score
statistic.
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Burden Association Tests for Rare Variants

I Burden tests have been demonstrated to have reasonable
power when a large proportion of the rare variants in a region
are causal and with effects on phenotype that are in the same
direction

I Can also perform burden tests for a case-control phenotype:

logit(πi ) = β0 + β1

m∑
j=1

wjgij

where πi is the disease probability for individual i .

I A number of burden tests have been proposed including the
combined multivariate and collapsing method (Li and Leal,
2008) and the weighted sum test (Madsen and Browning,
2009) and .
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Kernal Association Tests for Rare Variants

I Kernel association methods do not aggregate variants into a
single value as the burden tests do.

I Kernel-based approaches aggregate individual variant statistics
measuring strength of association with each variant site.

I The sequence kernel association test (SKAT) proposed by Wu
et al. (2011) is a widely used kernel rare variant association
test.
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SKAT for rare-variant association testing

I SKAT is based on the following linear mixed model:

yi = α0 + GT
i β + εi

where
I Gi = (gi1, . . . , gim)T is the genotype vector for individual i at

the m variant sites,
I β is an m × 1 vector of random effects for the m variant sites

with β ∼ N(0, τW)
I τ is the variance component for the variants
I W is an m-dimensional diagonal matrix of pre-specified

weights for the variant sites.

I The SKAT association statistic is a score statistic for testing
the null hypothesis H0 : τ = 0 versus HA : τ > 0
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SKAT for rare-variant association testing

I This is equivalent to testing the null hypothesis of H0 : β = 0
versus HA : β 6= 0 but without requiring an m-degree of
freedom test for detecting genetic associations for all variant
sites, which would have little to no power when testing
multiple variants with small effect sizes.

I Note that the variance-covariance matrix of the phenotype
data Y = (y1, . . . , yn) is a function of the linear ”kernel”
matrix K = GWGT, where G = (G1, . . . ,Gn) is an n ×m
matrix of the genetic vectors for the n sample individuals at
the m variant sites.

I Other non-linear kernel matrices have also been proposed.
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SKAT-O: A unified rare-variant association approach

I Kernal-based methods have higher power when a large
proportion of the variants are non-causal or if there is a
combination of both risk and protective variants in a region
that are influencing the phenotype (Wu et al., 2011).

I Lee et al. (2012) proposed the SKAT-O method (where the
”O” is for ”optimal”)

I SKAT-O is a unified rare-variant association approach that
essentially a weighted average of burden and SKAT score
tests. The optimal weighting, based on the data, is chosen for
increased power.

I SKAT-O has been demonstrate to work well in a variety of
rare-variant association settings.
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