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Population Structure and Association Testing

I The observations in genome-wide association studies can have
several sources of dependence.

I Population structure, the presence of subgroups in the
population with ancestry differences or admixed ancestry, is a
major concern for association studies

I Population structure has long been recognized as a
confounding factor in genetic association studies.

I Heterogeneous genomes of sample individuals can lead to
both spurious association and reduced power if not properly
accounted for
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Confounding due to Ancestry
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Spurious Association
I Case/Control association test

I Comparison of allele frequency between cases and controls.

I Consider a sample from 2 populations:

I Red population overrepresented among cases in the sample.
I Genetic markers that are not influencing the disease but with

significant differences in allele frequencies between the
populations
=⇒ spurious association between disease and genetic marker
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Spurious Association
I Quantitative trait association test

I Test for association between genotype and trait value
I Consider sampling from 2 populations:

Histogram of Trait Values

Population 1
Population 2

I Blue population has higher trait values.
I Different allele frequency in each population

=⇒ spurious association between trait and genetic marker for
samples containing individuals from both populations 5 / 1
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Balding-Nichols Model
I A model that is often used for population structure is the

Balding-Nichols model (Balding and Nichols, 1995).
I Consider unrelated outbred individuals that are sampled from

a population with K subpopulations, i.e., the subpopulations
are 1, 2, . . . ,K .

I Assume that an individual can be a member of only one
subpopulation, i.e., there is no admixture.

I Under the Balding-Nichols model, the allele frequency for
subpopulation k , where 1 ≤ k ≤ K , is a random draw from a
beta distribution with parameters p(1− Fstk )/Fstk and
(1− p)(1− Fstk )/Fstk , where 0 < p < 1

I The parameter p can be viewed as the ancestral allele
frequency and Fstk can be viewed as Wright’s standardized
measure of variation for subpopulation k .
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Balding-Nichols Model: Covariance Structure
I Consider a single bi-allelic marker (e.g. a SNP) with allele

labels “0” and “1”
I Let N be the number of sampled individuals with genotype

data at the marker.
I Let X = (X1, . . .XN) where Xi =the number of alleles of type

1 in individual i , so the value of Xi is 0, 1, or 2.
I Under the Balding-Nichols model:

I Individual i has inbreeding coefficient equal to Fst

I If individuals i and j are are both from the same subpopulation
k, then Corr(Xi ,Xj) = Fstk

I If i and j are from different subpopulations then
Corr(Xi ,Xj) = 0

I The Fstk values, the number of subpopulations K , and the
subpopulation memberships for the sample individuals will
generally be unknown when there is cryptic population
structure. 7 / 1
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Balding-Nichols Model: Covariance Structure
If there is no structure then the covariance matrix of X will be a
function of the identity matrix:

I0 =


1 0 . . . 0
0 1 . . . 0
... . . . . . .

...
0 0 . . . 1

 ,

If there is structure then the covariance matrix of X will be a
function of :

Σ0 =


1 + Fst1 Fst1 . . . 0
Fst1 1 + Fst1 . . . 0

... . . . . . .
...

0 0 . . . 1 + FstK

 ,
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Case-Control Design

I Methods have been proposed to correct for cryptic population
structure in case-control studies by using data across the
genome.

I Let N be the number of individuals in the study.

I Let Y = (Y1, . . .YN) be a phenotype indicator vector for case
control status where Yi = 1 if i is a case and Yi = 0 if i is a
control

I Let M be the number of bi-allelic markers (e.g. SNPs) in the
data. Consider a marker s, where 1 ≤ s ≤ M, and let
Xs = (X1s , . . .XNs ) where Xis =the number of alleles of type 1
in individual i at marker s.
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Genomic Control

I Devlin and Roeder (1999) proposed correcting for
substructure via a method called ”genomic control.”

I For each marker s, the Armitage trend statistic is calculated

Ars = Nr2XsY

where r2XsY
is the squared correlation between the genotype

variable Xs for marker s and the binary phenotype variable Y.

I If there is no population structure, the distribution of Ars will
approximately follow a χ2 distribution with 1 degree of
freedom.

I If there is population structure, the statistic will deviate from
a χ2

1 distribution due to an inflated variance.
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Genomic Control

I Use λ =
median(Ar1 ,...,Ars ,...ArM

)

.456 as a correction factor for cryptic
structure, where .456 is the median of a χ2

1 distribution.

I The uniform inflation factor λ is then applied to the Armitage
trend statistic values

Ãrs =
Ars

λ

I Ãrs will approximately follow a χ2 distribution with 1 degree
of freedom.
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Genomic Control
I Another way to view genomic control is as follows:

Ars =
T 2

Var0(T )

where T is a measure of allele frequency differences between
cases and controls and Var0(T ) is the variance of T under the
null hypothesis

I For the Armitage statistic, Var0(T ) is calculated assuming
individuals are unrelated (calculation based on the identity
matrix).

I Genomic control inflates this variance to account for the
structure (unknown Fst values)

Ãrs =
T 2

λVar0(T )
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Identifying Population Structure with PCA

I Principal Components Analysis (PCA) is the most widely used
approach for identifying and adjusting for ancestry difference
among sample individuals

I PCA is method for calculating the principal components
that explain differences among the sample individuals in the
genetic data

I To perform a PCA for population structure inference, first
calculate an empirical covariance matrix Ψ̂ with components
ψ̂ij :

ψ̂ij =
1

M

M∑
s=1

(Xis − 2p̂s)(Xjs − 2p̂s)

p̂s(1− p̂s)

where p̂s is an allele frequency estimate for the type 1 allele at
marker s
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Identifying Population Structure with PCA

I Principal components (eigenvectors) for Ψ̂ can then be
obtained via a singular value decomposition (SVD).

I The top principal components are viewed as continuous axes
of variation that reflect subpopulation genetic variation in the
sample.

I Individuals with “similar” values for a particular top principal
component will have “similar” ancestry for that axes.

I Does PCA actually work in practice?
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PCA of Europeans

I An application of principal components to genetic data
(Novembre et al. 2008) showed that among Europeans for
whom all four grandparents originated in the same country,
the first two principal components computed using 200,000
SNPs could map their country of origin quite accurately in the
plane
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PCA of Europeans
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PCA in Finland

I There can be population structure in all populations, even
those that appear to be relatively ”homogenous”

I An application of principal components to genetic data from
Finland samples (Sabatti et al., 2008) identified population
structure that corresponded very well to geographic regions in
this country.
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PCA in Finland
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Principal Components Analysis: Association Testing

I Price et al. (2006) proposed corrected for structure in genetic
association studies by using PCA

I They developed a method called EIGENSTRAT for
association testing in structured populations where the top
principal components (highest eigenvalues) from a PCA can
be used as covariates in a multi-linear regression.

Y = β0 + β1X + β2PC1 + β3PC2 + β4PC3 + · · ·+ ε

I H0 : β1 = 0 vs. Ha : β1 6= 0
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Computation of Eigenstrat

I The kth axis of variation is defined to be the kth eigenvector
of Ψ̂ (that is, the eigenvector with kth largest eigenvalue).

I Thus, the ancestry ajk of individual j along the kth axis of
variation equals coordinate j of the kth eigenvector.

I Adjustments of genotypes for ancestry

I Let Xjs be the genotype of individual j (Xjs = 0, 1 or 2) at
marker s, and let aj be the ancestry of individual j along a
given axis of variation.

I X adjusted
js = Xjs − γsaj , where γs =

∑
i aiXis/

∑
i a

2
i

I γs is a regression coefficient for ancestry predicting genotype
across individuals j with valid genotypes at marker s.

I A similar adjustment is performed for each axis of variation.
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Computation of Eigenstrat

I Adjustments of phenotypes for ancestry

I Yj = 1 if j is a case and Yj = 0 if j is a control

I Y adjusted
j = Yj − δai , where δ =

∑
i aiYi/

∑
i a

2
i

I The EIGENSTRAT statistic adjusted for ancestry at marker s
is

EIGs = (N − K − 1)×
[
corr

(
Y adjusted
s ,X adjusted

)]2
where N is the number of subjects in the sample and K is the
number of axes of variation used to adjust for ancestry.

I EIGs will approximately follow a χ2 distribution with 1 degree
of freedom.
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Structured Samples with Related Individuals

I The methods discussed so far have been developed for
samples with unrelated individuals

I Methods may not be valid in samples with related individuals
(known and/or unknown)

I Many genetic studies have samples with related individuals

I Consider testing for association between a trait and a single
genetic marker in a sample that includes related individuals.

I Assume that there are some related individuals in the sample
from a structured population.

I If individuals i and j are from population k and they are
related, the correlation, however, is no longer Fstk !

I The correlation for the pair is now ψij , where ψij is a function
of both the kinship coefficient for individuals i and j and Fstk .
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ROADTRIPS

I The ROADTRIPS approach of Thornton and McPeek (2010)
incorporates an empirical covariance matrix Ψ̂ .

I The top principal components in EIGENSTRAT are not able
to capture the complicated covariance structure due to the
related individuals in the samples.

I Instead of taking the top principal components of the matrix
Ψ̂, ROADTRIPS uses the entire matrix to correct the variance
of a general class of statistics for unknown structure

I ROADTRIPS extensions have been developed for a number of
association tests including Pearson χ2 test, the Armitage trend
test, the corrected χ2 test, the WQLS test, and the MQLS test.

I ROADTRIPS is a valid association method for partially or
completely unknown population and pedigree structure.
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EMMAX: Linear Mixed Effects Models For Structure
I Kang et al. [Nature Genet, 2010] proposed the EMMAX

variance components method:

Y = β0 + β1X + g + ε,

with g ∼ N(0, σ2gΨ̂) and ε ∼ N(0, σ2e I)

I The variance components, σ2g and σ2e , are then estimated
based on this model using either a maximum likelihood or
restricted maximum likelihood (REML) approach.

I The null hypothesis of no association is H0 : β1 = 0, and the
alternative hypothesis is : HA : β1 6= 0

I The EMMAX statistic is the score statistic for testing the null
hypothesis of β1 = 0.

I Similar mixed effects methods proposed by Lippert et al.
(2011, Nat Methods) and Stephens et al. (2012, Nat Genet).
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Structured Association Method

I Pritchard et al. (2000) developed the program STRUCTURE

I This method uses MCMC to cluster genetically similar
individuals into ”subpopulations.”

I Association testing is performed within each of the
subpopulations

I Assignments of individuals are highly sensitive to the number
of subpopulations K in the sample, which is often unknown
when there is cryptic structure

I Not computationally feasible for genome-wide association
studies

25 / 1



Methods for Cryptic Structure

Structured Association Method

I Let K be the number of populations, Let N be the number of
individuals in the sample. We first consider the case when K
is known.

I We assume that each individual originates in one of the K
populations, i.e., there is no admixture.

I Let L denote the number of loci and let the vector X denote
the genotypes of the loci for the individuals.

I Let the vector Z be the populations of origin for the
individuals. Let P be the allele frequencies for the
populations. The vectors Z and P are both unknown
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Structured Association Method

I The elements of the vectors are as follows:

(x
(i ,1)
l , x

(i ,2)
l ) = genotype of ith individual at the lth locus,

where i = 1, 2, ...,N and l = 1, 2, ..., L

zi = population from which ith individual originated

pklj = frequency of allele j at lth locus in populaion k

where k = 1, 2, ...,K and j = 1, 2, ..., Jl

I Now, given the allele frequencies and the population of

origins, we have that x
(i ,a)
l are independent and

Pr(x
(i ,a)
l = j |Z ,P) = pzi lj .
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Prior Distributions

I For the prior distribution of Z, we have that the zi ’s are
independent and each one follows a discrete uniform
distribution where Pr(zi = k) = 1

K for k = 1, 2, ...,K .

I This prior seems reasonable since we have no information on
the population of origin before observing any genotype
information

I For population k at locus l we have have that the prior
distribution of pkl = (pkl1, pkl2, ..., pklJl ) ∼ D(λ1, λ1, ..., λJl )
where D is a Dirichlet distribution.

I Before observing any genotype data we have no information
about the allele frequency distributions. To account for our
ignorance of this, we make λ1 = λ2 = ... = λJl = 1.
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The Gibbs Sampling MCMC Algorithm
I Let x i denote the observed genotype data for individual i for

all loci. Now

Pr(zi = k|X ,P) =
Pr(x i |zi = k ,P)Pr(zi = k |P)Pr(P)∑K

k ′=1 Pr(x i |zi = k ′,P)Pr(zi = k ′|P)Pr(P)

=
Pr(x i |zi = k ,P) 1

K Pr(P)∑K
k ′=1 Pr(x i |zi = k ′,P) 1

K Pr(P)

=
Pr(x i |zi = k ,P)∑K

k ′=1 Pr(x i |zi = k ′,P)

Note that Pr(x
(i ,a)
l = j |Z ,P) = pzi lj , for individual i,

population zi , locus l , and allele j . So we can easily obtain
likelihood of the genotype data of individual i since
Pr(x i |zi = k ,P) =

∏L
l=1 pklx(i,1)l

p
klx

(i,2)
l
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The Gibbs Sampling MCMC Algorithm

I We will now give the full condition for P. We have that
pkl = (pkl1, pkl2, ..., pklJl ) and

Pr(pkl |X ,Z ) ∝ pλ1+nkl1
kl1 · pλ2+nkl2

kl2 · · · pλJl+nklJl
klJl

where nklj is the number of copies of allele j found at locus l
in individuals that are assigned to population k. So,
pkl = (pkl1, pkl2, ..., pklJl ) is a
D(λ1 + nkl1, λ1 + nkl2, ..., λJl + nklJl )
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The Gibbs Sampling MCMC Algorithm

I Now that we have the full conditionals, we can do implement
the Gibbs sampler.

I Step 0: Start with an initial value of Z by randomly drawing
from the discrete uniform distribution 1

k for each component.
Denote this initial value as Z 0.

I Step 1: Draw Pn from Pr(P|X ,Zn−1)

I Step 2: Draw Zn from Pr(Z |X ,Pn)

I For n=1,2,..., repeat Step 1 and Step 2.
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The Gibbs Sampling MCMC Algorithm: Example
I Two random mating populations were simulated. Each

individual in the sample comes are from one of the two
populations.

I Prichard et al. (2000) performed simulations under this model
for 5 loci and for 15 loci.

I The number of individuals in their sample was is over 100.
I Algorithm performs very well in clustering individuals for the 5

loci case and is almost perfect for the 15 loci case
I Assigning individuals to originating populations depend on a

number of factors which include the number of individuals in
the sample which in turn affects the accuracy of P, the number
of loci, and the allele frequency within the populations.

I Interest in obtaining clustering results if the number of loci is
decreased to 4 and the sample size is reduced to 20 (9 from
one population 1 and 11 from population 2).
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The Gibbs Sampling MCMC Algorithm: Example

Simulated from the following two populations:

Allele Frequencies at Each Locus for The Two Populations

Locus 1 Locus 2 Locus 3 Locus 4

Population 1 Allele 1: .90 Allele 1: .20 Allele 1: .10 Allele 1: .50
Allele 2: .10 Allele 2: .80 Allele 2: .20 Allele 2: .30

Allele 3: .70 Allele 3: .20

Population 2 Allele 1: .10 Allele 1: .80 Allele 1: .70 Allele 1: .20
Allele 2: .90 Allele 2: .20 Allele 2: .20 Allele 2: .10

Allele 3: .10 Allele 3: .70
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The Gibbs Sampling MCMC Algorithm: Example
Genotypes of Sample Individuals at Each Locus

Locus 1 Locus 2 Locus 3 Locus 4

Person 1 2, 2 1, 2 1, 1 3, 3
Person 2 2, 2 1, 1 1, 1 3, 3
Person 3 2, 2 2, 2 2, 3 1, 1
Person 4 2, 1 1, 1 1, 1 2, 3
Person 5 2, 2 1, 2 1, 1 1, 1
Person 6 2, 2 2, 1 1, 1 3, 1
Person 7 1, 1 1, 2 2, 3 3, 1
Person 8 1, 1 2, 2 1, 3 3, 1
Person 9 1, 1 2, 2 3, 1 3, 1
Person 10 1, 1 2, 1 2, 2 2, 3
Person 11 2, 2 1, 2 1, 1 3, 2
Person 12 2, 2 1, 1 2, 1 1, 3
Person 13 1, 1 2, 1 3, 3 3, 1
Person 14 2, 1 1, 2 1, 1 3, 1
Person 15 1, 1 2, 2 3, 3 3, 2
Person 16 1, 1 2, 2 3, 3 1, 1
Person 17 1, 2 1, 1 1, 1 1, 1
Person 18 2, 2 1, 1 1, 3 3, 3
Person 19 1, 1 2, 2 3, 2 2, 1
Person 20 2, 2 1, 1 3, 2 2, 3

Individuals from population 1: 3, 7, 8, 9, 10, 13, 15, 16, and 19.
Individuals from population 2: 1, 2, 4, 5, 6, 11, 12, 14, 17, 18, and
20. 34 / 1
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The Gibbs Sampling MCMC Algorithm: Example
Below are plots for the allele frequency parameters for population 2
at locus 3. The histograms are from samples following the
15,000th iteration (30,000 total iterations).

ITERATION[30 * seq(1, 1000)]
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The Gibbs Sampling MCMC Algorithm: Example
Marginal Distribution of Z

TRUE POPULATION Pr(Z=1) Pr(Z=2) Correct Infer.

Person 1 2 0.1202667 0.8797333 YES
Person 2 2 0.1287333 0.8712667 YES
Person 3 1 0.3936667 0.6063333 NO
Person 4 2 0.4176667 0.5823333 YES
Person 5 2 0.06886667 0.9311333 YES
Person 6 2 0.0774 0.9226 YES
Person 7 1 0.7792667 0.2207333 YES
Person 8 1 0.5047333 0.4952667 UNSURE
Person 9 1 0.4913333 0.5086667 UNSURE
Person 10 1 0.9305333 0.06946667 YES
Person 11 2 0.2615333 0.7384667 YES
Person 12 2 0.2529333 0.7470667 YES
Person 13 1 0.7080667 0.2919333 YES
Person 14 2 0.07993333 0.9200667 YES
Person 15 1 0.8038667 0.1961333 YES
Person 16 1 0.63453337 0.3654667 YES
Person 17 2 0.1385333 0.8614667 YES
Person 18 2 0.1385333 0.746 YES
Person 19 1 0.8957333 0.1042667 YES
Person 20 2 0.7332667 0.2667333 NO

The posterior marginal distribution of Z was obtained and used to
determine whether the individuals were properly classified. An
individual is considered to be properly classified if the mode of the
posterior distribution is at the individuals true population of origin.
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