Genetic Covariance of Trait Values for Relatives

Coefficients of Coancestry

- We previously showed that for a pair of individuals that the kinship coefficient (or coefficient of coancestry) θ can be written in terms of Jacquard's 9 condensed coefficients of identity where

$$
\theta=\Delta_{1}+\frac{1}{2}\left(\Delta_{3}+\Delta_{5}+\Delta_{7}\right)+\frac{1}{4} \Delta_{8}
$$

Jacquard's (1970) 9 Condensed Coefficients of Identity

Coefficients of Coancestry

- Consider an outbred population. For outbred populations we have that Δ_{1} to Δ_{6} are 0 .
- it is convenient to let k_{2}, k_{1} and k_{0} represent the probability that a pair of outbred individuals sharing 2 , 1 , or 0 alleles IBD, respectively, in lieu of Δ_{7}, Δ_{8}, and Δ_{9}.
- For outbred populations the kinship coefficient for a pair of individuals can be written as

$$
\theta=\frac{1}{2} k_{2}+\frac{1}{4} k_{1}
$$

- Note that the kinship coefficient is based on the probability of sharing 0,1 , or 2 alleles IBD. However, at a locus, a pair of individuals actually share either zero, one, or two alleles ibd at a locus.

Coefficients of Coancestry

- Let k_{0}^{*}, k_{1}^{*}, and k_{2}^{*} be the actual value at the locus.
- Exactly one of these three quantities is one (for that ibd state being true) and the other two are zero (for those ibd states being false).
- Calculate the following
- $E\left[k_{i}^{*}\right]$
- $\operatorname{Var}\left[k_{i}^{*}\right]$
- $E\left[k_{i}^{*} k_{j}^{*}\right]$ for $i \neq j$
- $\operatorname{Cov}\left[k_{i}^{*}, k_{j}^{*}\right]$ for $i \neq j$

Variance of actual Coancestry

- We have the following:
- $E\left[k_{i}^{*}\right]=k_{i}$
- $\operatorname{Var}\left[k_{i}^{*}\right]=k_{i}\left(1-k_{i}\right)$
- $E\left[k_{i}^{*} k_{j}^{*}\right]=0$ for $i \neq j$
- $\operatorname{Cov}\left[k_{i}^{*}, k_{j}^{*}\right]=-k_{i} k_{j}$ for $i \neq j$

Variance of actual Coancestry

- Now, the actual coancestry at a locus for two noninbred individuals is

$$
\theta^{*}=\frac{1}{2} k_{2}^{*}+\frac{1}{4} k_{1}^{*}
$$

- Calculate $\operatorname{Var}\left(\theta^{*}\right)$

Variance of actual Coancestry

$$
\begin{gathered}
\operatorname{Var}\left(\theta^{*}\right)=\frac{1}{4} \operatorname{Var}\left(k_{2}^{*}\right)+\frac{1}{16} \operatorname{Var}\left(k_{1}^{*}\right)+\frac{1}{4} \operatorname{Cov}\left(k_{1}^{*}, k_{2}^{*}\right) \\
=\frac{1}{4} k_{2}\left(1-k_{2}\right)+\frac{1}{16} k_{1}\left(1-k_{1}\right)-\frac{1}{4} k_{2} k_{1}
\end{gathered}
$$

- First cousins have $k_{2}=0, k_{1}=.25$ and $k_{0}=.75$. Calculate the expected value, variance, and standard deviation of actual coancestry for this relative pair type at a locus.
- What is the variance of actual coancestry for parent-offspring?

Variance of actual Coancestry

$$
\operatorname{Var}\left(\theta^{*}\right)=\frac{1}{4} k_{2}\left(1-k_{2}\right)+\frac{1}{16} k_{1}\left(1-k_{1}\right)-\frac{1}{4} k_{2} k_{1}
$$

- First cousins have $k_{2}=0, k_{1}=\frac{1}{4}$ and $k_{0}=\frac{3}{4}$, so $\theta=\frac{1}{16}=.0625$.
- The variance of actual coancestry is $\left(\frac{1}{16}\right)\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)=\frac{3}{256}$
- The standard deviation is $\frac{\sqrt{3}}{16}=.10825$
- For parent-offspring, the variance of actual coancestry is 0 .

Genetic Covariance for Two Outbred Relatives

- We will now focus on obtaining the genetic covariance of trait values for two outbred relatives
- Consider a quantitative trait that is influence by a single locus.
- As before, we denote the genetic value for genotype $A_{i} A_{j}$ as

$$
G_{i j}=\mu_{G}+\alpha_{i}+\alpha_{j}+\delta_{i j}
$$

where

$$
\begin{gathered}
\mu_{G}=\sum_{i} \sum_{j} p_{i} p_{j} G_{i j}=G . . \\
\alpha_{i}=\sum_{j} p_{j} G_{i j}-\mu_{G}=G_{i .}-G . . \\
\delta_{i j}=G_{i j}-\mu_{G}-\alpha_{i}-\alpha_{j}=G_{i j}-G_{i .}-G_{j .}+G_{. .}
\end{gathered}
$$

- These imply that $\sum_{i} p_{i} \alpha_{i}=0$ and $\sum_{i} p_{i} \delta_{i j}=0$

Genetic Covariance for Two Outbred Relatives

- Consider two individuals X and Y. We will calculate the covariance of the genetic values for X and Y.
- Let X_{1} and X_{2} be the two alleles at the locus for individual X, and let Y_{1} and Y_{2} be the two alleles for individual Y
- We have the following:

$$
\begin{gathered}
\operatorname{Cov}\left(G_{X_{1} X_{2}}, G_{Y_{1} Y_{2}}\right)= \\
\operatorname{Cov}\left(\mu_{G}+\alpha_{X_{1}}+\alpha_{X_{2}}+\delta_{X_{1} X_{2}}, \mu_{G}+\alpha_{Y_{1}}+\alpha_{Y_{2}}+\delta_{Y_{1} Y_{2}}\right) \\
=\operatorname{Cov}\left(\alpha_{X_{1}}, \alpha_{Y_{1}}\right)+\operatorname{Cov}\left(\alpha_{X_{1}}, \alpha_{Y_{2}}\right)+\operatorname{Cov}\left(\alpha_{X_{1}}, \delta_{Y_{1} Y_{2}}\right) \\
+\operatorname{Cov}\left(\alpha_{X_{2}}, \alpha_{Y_{1}}\right)+\operatorname{Cov}\left(\alpha_{X_{2}}, \alpha_{Y_{2}}\right)+\operatorname{Cov}\left(\alpha_{X_{2}}, \delta_{Y_{1} Y_{2}}\right) \\
+\operatorname{Cov}\left(\delta_{X_{1} X_{2}}, \alpha_{Y_{1}}\right)+\operatorname{Cov}\left(\delta_{X_{1} X_{2}}, \alpha_{Y_{2}}\right)+\operatorname{Cov}\left(\delta_{X_{1} X_{2}}, \delta_{Y_{1} Y_{2}}\right) \\
=4 \operatorname{Cov}\left(\alpha_{X_{1}}, \alpha_{Y_{1}}\right)+2 \operatorname{Cov}\left(\alpha_{X_{1}}, \delta_{Y_{1} Y_{2}}\right)+2 \operatorname{Cov}\left(\delta_{X_{1} X_{2}}, \alpha_{Y_{1}}\right) \\
+\operatorname{Cov}\left(\delta_{X_{1} X_{2}}, \delta_{Y_{1} Y_{2}}\right)
\end{gathered}
$$

Since in outbred populations the two alleles within an individual are independent and identically distributed (iid)

Genetic Covariance for Two Outbred Relatives

- Now let's first focus on the terms involving the covariance of the additive and dominance effects: $2 \operatorname{Cov}\left(\alpha_{X_{1}}, \delta_{Y_{1} Y_{2}}\right)$ and $2 \operatorname{Cov}\left(\delta_{X_{1} X_{2}}, \alpha_{Y_{1}}\right)$
- Let's consider the covariance when X and Y are the monozygotic twins, or the genetic equivalence of $X=Y$. What do we know about $\operatorname{Cov}\left(\alpha_{X_{1}}, \delta_{X_{1} X_{2}}\right)$

$$
\begin{aligned}
\operatorname{Cov}\left(\alpha_{X_{1}}, \delta_{X_{1} X_{2}}\right) & =E\left(\alpha_{X_{1}} \delta_{X_{1} X_{2}}\right)-E\left(\alpha_{X_{1}}\right) E\left(\delta_{X_{1} X_{2}}\right) \\
& =E\left(\alpha_{X_{1}} \delta_{X_{1} X_{2}}\right)-0 \\
=\sum_{i} \sum_{j} p_{i} p_{j} \alpha_{i} \delta_{i j} & =\sum_{i} p_{i} \alpha_{i} \sum_{j} p_{j} \delta_{i j}=\sum_{i} p_{i} \alpha_{i}(0)=0
\end{aligned}
$$

- We actually already know this to be true since the additive effects and the dominance effects are uncorrelated!

Genetic Covariance for Two Outbred Relatives

- It follows that for any pair of individuals X and Y, who obviously must have IBD sharing that is less than or equal to monozygotic twins, that the additive and dominance effects must also have a covariance of 0 .
- So we have

$$
\begin{gathered}
\operatorname{Cov}\left(G_{X_{1} X_{2}}, G_{Y_{1} Y_{2}}\right)= \\
4 \operatorname{Cov}\left(\alpha_{X_{1}}, \alpha_{Y_{1}}\right)+2 \operatorname{Cov}\left(\alpha_{X_{1}}, \delta_{Y_{1} Y_{2}}\right)+2 \operatorname{Cov}\left(\delta_{X_{1} X_{2}}, \alpha_{Y_{1}}\right) \\
+\operatorname{Cov}\left(\delta_{X_{1} X_{2}}, \delta_{Y_{1} Y_{2}}\right) \\
=4 \operatorname{Cov}\left(\alpha_{X_{1}}, \alpha_{Y_{1}}\right)+\operatorname{Cov}\left(\delta_{X_{1} X_{2}}, \delta_{Y_{1} Y_{2}}\right)
\end{gathered}
$$

- Now take a moment to calculate $4 \operatorname{Cov}\left(\alpha_{X_{1}}, \alpha_{Y_{1}}\right)$. Hint: use the kinship coefficient θ for the two individuals for this calculation

Genetic Covariance for Two Outbred Relatives

- We have

$$
\begin{aligned}
\operatorname{Cov}\left(\alpha_{X_{1}}, \alpha_{Y_{1}}\right. & =E\left[\alpha_{X_{1}} \alpha_{Y_{1}}\right]-E\left[\alpha_{X_{1}}\right] E\left[\alpha_{Y_{1}}\right] \\
& =E\left[\alpha_{X_{1}} \alpha_{Y_{1}}\right]-0
\end{aligned}
$$

- Now

$$
\begin{gathered}
E\left[\alpha_{X_{1}} \alpha_{Y_{1}}\right]=E\left[\alpha_{X_{1}} \alpha_{Y_{1}} \mid X_{1} \text { and } Y_{1} \text { are IBD }\right] P\left(X_{1} \text { and } Y_{1} \text { are IBD }\right) \\
+E\left[\alpha_{X_{1}} \alpha_{Y_{1}} \mid X_{1} \text { and } Y_{1} \text { are not IBD] } P\left(X_{1} \text { and } Y_{1} \text { are not IBD }\right)\right. \\
=E\left[\alpha_{X_{1}}^{2}\right] \theta+0(1-\theta) \\
=\frac{1}{2} \sigma_{a}^{2} \theta
\end{gathered}
$$

where σ_{a}^{2} is the additive variance for the trait since we previously define $\sigma_{a}^{2}=2 \operatorname{Var}\left(\alpha_{i}\right)=2 \sum_{i} p_{i} \alpha_{i}^{2}$

Genetic Covariance for Two Outbred Relatives

- So we have

$$
\begin{gathered}
\operatorname{Cov}\left(G_{X_{1} X_{2}}, G_{Y_{1} Y_{2}}\right)= \\
=4 \operatorname{Cov}\left(\alpha_{X_{1}}, \alpha_{Y_{1}}\right)+\operatorname{Cov}\left(\delta_{X_{1} X_{2}}, \delta_{Y_{1} Y_{2}}\right) \\
=4\left(\frac{1}{2} \sigma_{a}^{2}\right)+\operatorname{Cov}\left(\delta_{X_{1} X_{2}}, \delta_{Y_{1} Y_{2}}\right)=2 \theta \sigma_{a}^{2}+\operatorname{Cov}\left(\delta_{X_{1} X_{2}}, \delta_{Y_{1} Y_{2}}\right)
\end{gathered}
$$

- Now take a moment to calculate $\operatorname{Cov}\left(\delta_{X_{1} X_{2}}, \delta_{Y_{1} Y_{2}}\right)$. Hint: condition of the probabilities of the pair sharing zero, one, or two alleles IBD, i.e., k_{0}, k_{1}, and k_{2}

Genetic Covariance for Two Outbred Relatives

- We have

$$
\begin{aligned}
\operatorname{Cov}\left(\delta_{X_{1} X_{2}}, \delta_{Y_{1} Y_{2}}\right) & =E\left[\delta_{X_{1} X_{2}} \delta_{Y_{1} Y_{2}}\right]-E\left[\delta_{X_{1} X_{2}}\right] E\left[\delta_{Y_{1} Y_{2}}\right] \\
& =E\left[\delta_{X_{1} X_{2}} \delta_{Y_{1} Y_{2}}\right]-0
\end{aligned}
$$

- Now $E\left[\delta_{X_{1} X_{2}} \delta_{Y_{1} Y_{2}}\right]=$

$$
\begin{aligned}
& E\left[\delta_{X_{1} X_{2}} \delta_{Y_{1} Y_{2}} \mid X \text { and } Y \text { share } 2 \text { alleles IBD }\right] \times \\
& P(X \text { and } Y \text { share } 2 \text { alleles IBD }) \\
& +E\left[\delta_{X_{1} X_{2}} \delta_{Y_{1} Y_{2}} \mid X \text { and } Y \text { share } 1 \text { allele IBD }\right] \times \\
& P(X \text { and } Y \text { share } 1 \text { alleles IBD }) \\
& +E\left[\delta_{X_{1} X_{2}} \delta_{Y_{1} Y_{2}} \mid X \text { and } Y \text { share } 0 \text { alleles IBD }\right] \times \\
& P(X \text { and } Y \text { share } 0 \text { alleles IBD })
\end{aligned}
$$

Genetic Covariance for Two Outbred Relatives

- We have that

$$
\begin{aligned}
& E\left[\delta_{X_{1} X_{2}} \delta_{Y_{1} Y_{2}} \mid X \text { and } Y \text { share } 2 \text { alleles IBD }\right] \times \\
& P(X \text { and } Y \text { share } 2 \text { alleles IBD })=E\left[\delta_{X_{1} X_{2}}^{2}\right] k_{2}
\end{aligned}
$$

- We also have that

$$
E\left[\delta_{X_{1} X_{2}} \delta_{Y_{1} Y_{2}} \mid X \text { and } Y \text { share } 1 \text { allele IBD }\right] \times
$$

$$
\begin{gathered}
P(X \text { and } Y \text { share } 1 \text { alleles IBD })=k_{1} \sum_{l} \sum_{i} \sum_{j} p_{l} p_{i} p_{j} \delta_{i l} \delta_{j l} \\
=k_{1} \sum_{l} p_{l} \sum_{i} p_{i} \delta_{i l} \sum_{j} p_{j} \delta_{j l} \\
=k_{1} \sum_{l} p_{l}(0)(0)
\end{gathered}
$$

since $\sum_{i} p_{i} \delta_{i j}=0$.

Genetic Covariance for Two Outbred Relatives

- Finally, we have that

$$
\begin{gathered}
E\left[\delta_{X_{1} X_{2}} \delta_{Y_{1} Y_{2}} \mid X \text { and } Y \text { share } 0 \text { alleles IBD }\right] \times \\
P(X \text { and } Y \text { share } 0 \text { alleles IBD })=E\left[\delta_{X_{1} X_{2}}\right] E\left[\delta_{Y_{1} Y_{2}}\right] k_{0} \\
=(0)(0) k_{0}=0
\end{gathered}
$$

Genetic Covariance for Two Outbred Relatives

- So, putting the three terms together we have that

$$
\operatorname{Cov}\left(\delta_{X_{1} X_{2}}, \delta_{Y_{1} Y_{2}}\right)=E\left[\delta_{X_{1} X_{2}}^{2}\right] k_{2}+(0) k_{1}+(0) k_{0}=\sigma_{d}^{2} k_{2}
$$

where σ_{d}^{2} is the dominance variance for the trait that we previously define as

$$
\sigma_{d}^{2}=\operatorname{Var}\left(\delta_{i j}\right)=E\left[\delta_{i j}^{2}\right]=\sum_{i j} p_{i j} \delta_{i j}^{2}
$$

Genetic Covariance for Two Outbred Relatives

- So we have

$$
\begin{gathered}
\operatorname{Cov}\left(G_{X_{1} X_{2}}, G_{Y_{1} Y_{2}}\right)= \\
=4 \operatorname{Cov}\left(\alpha_{X_{1}}, \alpha_{Y_{1}}\right)+\operatorname{Cov}\left(\delta_{X_{1} X_{2}}, \delta_{Y_{1} Y_{2}}\right) \\
=2 \theta \sigma_{a}^{2}+k_{2} \sigma_{d}^{2}
\end{gathered}
$$

- For inbred individuals, obtaining genetic covariance is a bit more complicated, but one can show that for X and Y inbreed we have

O

$$
\begin{gathered}
\operatorname{Cov}\left(G_{X_{1} X_{1}}, G_{Y_{1} Y_{2}}\right)= \\
=2 \theta \sigma_{a}^{2}+\Delta_{7} \sigma_{d}^{2} \\
+D_{1}\left(4 \Delta_{1}+\Delta_{3}+\Delta_{5}\right)+D_{2} \Delta_{1}+H^{2}\left(\Delta_{1}+\Delta_{2}-F_{X} F_{Y}\right)
\end{gathered}
$$

Terminology and Expressions for Variance of Trex

Components	Multi-allelic	Bi-allelic
Additive Variance	$\sigma_{A}^{2}=2 \sum_{i} p_{i} \alpha_{i}^{2}$	$\sigma_{A}^{2}=2 p q \alpha^{2}$
Dominance Variance	$\sigma_{D}^{2}=\sum_{i} \sum_{j} p_{i} p_{j} \delta_{i j}^{2}$	$\sigma_{D}^{2}=(2 p q d)^{2}$
Inbreeding depression	$H=\sum_{i} p_{i} \delta_{i i}$	$\mathrm{H}=-2 q p d$
Covariance of α_{i} 's and $\delta_{i i}{ }^{\prime}$'s	$D_{1}=\sum_{i} p_{i} \alpha_{i} \delta_{i i}$	$D_{1}=2 p q d \alpha(p-q)$
Variance of $\delta_{i i}$'s	$D_{2}=\sum_{i} p_{i} \delta_{i i}^{2}-H^{2}$	$D_{2}=4 p q(1-4 p q) d^{2}$

