

Mean and Variance of a Quantitative Trait in Outbred and Inbred Populations

General Expression for Quantitative Traits for Multi-allelic Locus

• For an arbitrary number of alleles at a locus, the genetic value for genotype A_iA_j can be written as

$$G_{ij} = \mu_G + lpha_i + lpha_j + \delta_{ij}$$

and values assigned to the coefficients are:

$$\mu_G = \sum_i \sum_j p_i p_j G_{ij} = G..$$
$$\alpha_i = \sum_j p_j G_{ij} - \mu_G = G_{i.} - G..$$
$$\delta_{ij} = G_{ij} - \mu_G - \alpha_i - \alpha_j = G_{ij} - G_{i.} - G_{j.} + G..$$

• Show that $\sum_i p_i \alpha_i = 0$ and $\sum_i p_i \delta_{ij} = 0$

Mean Trait Value in Inbred Populations

- We previously derived expression for the mean and the variance of a quantitative trait in outbred populations for a single causal genetic locus. We will now focus on deriving these expressions in populations that are inbred.
- Finding the first two moments (the means and variances) for quantitative trait values in inbred populations proceeds by tracing the relevant genes back to genes in a reference (or founder) population.
- For a single-locus trait this requires the inbreeding coefficient that we introduced and discussed in the previous lecture.
- For a random member of a population inbred to an extent *F* relative to the reference population, the genotype frequencies at a multi-allelic locus are

$$P_{ii} = p_i^2 + F p_i (1 - p_i)$$
$$P_{ij} = 2 p_i p_j (1 - F)$$

- What is the expected trait value for this population.
 - □ > < □ > < Ξ > < Ξ > < Ξ > Ξ < Q (* 3 / 17

Mean Trait Value in Inbred Populations

• The expected trait value for an individual with inbreeding coefficient *F* is

$$\begin{split} \mu_{G_F} &= \sum_i \sum_j P_{ij} (\mu_G + \alpha_i + \alpha_j + \delta_{ij}) \\ &= \sum_i [p_i^2 + F p_i (1 - p_i)] (\mu_G + 2\alpha_i + \delta_{ii}) \\ &+ \sum_{i \neq j} [p_i p_j (1 - F)] (\mu_G + \alpha_i + \alpha_j + \delta_{ij}) \\ &= \sum_i [p_i^2 (1 - F) + F p_i] (\mu_G + 2\alpha_i + \delta_{ii}) \\ &+ \sum_{i \neq j} [p_i p_j (1 - F)] (\mu_G + \alpha_i + \alpha_j + \delta_{ij}) \end{split}$$

<ロ > < 回 > < 目 > < 目 > < 目 > < 目 > 目 の Q (や 4/17)

Mean Trait Value in Inbred Populations

$$= F \sum_{i} p_{i}(\mu_{G} + 2\alpha_{i} + \delta_{ii})$$
$$+ (1 - F) \sum_{i} \sum_{j} p_{i} p_{j}(\mu_{G} + \alpha_{i} + \alpha_{j} + \delta_{ij})$$
$$= F(\mu_{G} + \sum_{i} p_{i} \delta_{ii}) + (1 - F)(\mu_{G})$$
$$= \mu_{G} + FH$$

where $H = \sum_{i} p_i \delta_{ii}$ and the δ_{ij} terms are the same as in the non-inbreeding case.

- So the mean trait value in an inbred population is $\mu_{G_F} = \mu_G + FH$
- μ_{G_F} changes with the degree of inbreeding in the population and the degree of dominance for the trait.

Inbreeding Depression

- Remember that for the two-allelic case we have the following dominance effects:
 - $\delta_{11} = -2q^2d$
 - $\delta_{12} = 2pqd$
 - $\delta_{22} = -2p^2d$
- Assume that there is some dominance for the trait, e.g., d > 0. What effect would we expect this have on the mean trait values in inbred populations relative to outbred populations?
- What about if there is no dominance e.g., d = 0?
- The decline in the mean phenotype with increasing homozygosity within populations is known as **inbreeding depression**
- Inbred individuals are almost always less fit than progeny of nonrelatives

Trait Value Moments in Inbred Populations

- We derived an expression for the first moment (the mean) for the trait value distribution in an inbreed population.
- To obtain the trait variance, we need to obtain the second moment, which is the expected value of the square of the linear model for the trait values.
- Using a similar approach used to obtain the first moment, we will now obtain the second moment.

• For a random member of a population inbred to an extent *F* relative to the reference population, the genotype frequencies are

$$P_{ii} = p_i^2 + F p_i (1 - p_i)$$
$$P_{ij} = 2p_i p_j (1 - F)$$

So we have that

$$E(G_F^2) = \sum_i \sum_j P_{ij} (\mu_G + \alpha_i + \alpha_j + \delta_{ij})^2$$

=
$$\sum_i [p_i^2 + Fp_i(1 - p_i)](\mu_G + 2\alpha_i + \delta_{ii})^2$$

+
$$\sum_{i \neq j} [p_i p_j(1 - F)](\mu_G + \alpha_i + \alpha_j + \delta_{ij})^2$$

・ロト ・ 日 ・ ・ E ・ ・ E ・ うへぐ

$$= \sum_{i} [p_{i}^{2}(1-F) + Fp_{i}](\mu_{G}^{2} + 4\alpha_{i}^{2} + \delta_{ii}^{2} + 4\mu_{G}\alpha_{i} + 2\mu_{G}\delta_{ii} + 4\alpha_{i}\delta_{ii})$$

$$+ \sum_{i \neq j} [p_{i}p_{j}(1-F)](\mu_{G}^{2} + \alpha_{i}^{2} + \alpha_{j}^{2} + \delta_{ij}^{2} + 2\mu_{G}\alpha_{i} + 2\mu_{G}\alpha_{j}$$

$$+ 2\mu_{G}\delta_{ij} + 2\alpha_{i}\alpha_{j} + 2\alpha_{i}\delta_{ij} + 2\alpha_{j}\delta_{ij})$$

$$= \sum_{i} Fp_{i}(\mu_{G}^{2} + 4\alpha_{i}^{2} + \delta_{ii}^{2} + 4\mu_{G}\alpha_{i} + 2\mu_{G}\delta_{ii} + 4\alpha_{i}\delta_{ii})$$

$$+ \sum_{i} \sum_{j} [p_{i}p_{j}(1-F)](\mu_{G}^{2} + \alpha_{i}^{2} + \alpha_{j}^{2} + \delta_{ij}^{2} + 2\mu_{G}\alpha_{i} + 2\mu_{G}\alpha_{j}$$

$$+ 2\mu_{G}\delta_{ij} + 2\alpha_{i}\alpha_{j} + 2\alpha_{i}\delta_{ij} + 2\alpha_{j}\delta_{ij})$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへ⊙

9/17

- Let's focus on the first summand involving F
- Recall that we previously showed that $\sum_i p_i \alpha_i = 0$ and $\sum_i p_i \delta_{ij} = 0$. So

$$F\left(\mu_G^2 + 4\sum_i p_i \alpha_i^2 + \sum_i p_i \delta_{ii}^2 + 4\mu_G \sum_i p_i \alpha_i + 2\mu_G \sum_i p_i \delta_{ii} + 4\sum_i p_i \alpha_i \delta_{ii}\right)$$
$$= F\left(\mu_G^2 + 4\sum_i p_i \alpha_i^2 + \sum_i p_i \delta_{ii}^2 + 2\mu_G \sum_i p_i \delta_{ii} + 4\sum_i p_i \alpha_i \delta_{ii}\right)$$

• Now focus on the second summand involving 1-F

$$\sum_{i} \sum_{j} [p_i p_j (1-F)] (\mu_G^2 + \alpha_i^2 + \alpha_j^2 + \delta_{ij}^2 + 2\mu_G \alpha_i + 2\mu_G \alpha_j + 2\mu_G \alpha_j + 2\alpha_i \alpha_j + 2\alpha_i \delta_{ij} + 2\alpha_j \delta_{ij})$$

• Simplify this term using $\sum_i p_i \alpha_i = 0$ and $\sum_i p_i \delta_{ij} = 0$.

$$= (1 - F) \left(\mu_G^2 + \sum_i \sum_j p_i p_j \alpha_i^2 + \sum_i \sum_j p_i p_j \alpha_j^2 + \sum_i \sum_j p_i p_j \delta_{ij}^2 + 2\mu_G \sum_i \sum_j p_i p_j \alpha_i + 2\mu_G \sum_i \sum_j p_i p_j \alpha_j + 2\mu_G \sum_i \sum_j p_i p_j \delta_{ij} + 2\sum_i \sum_j p_i p_j \alpha_i \alpha_j + 2\sum_i \sum_j p_i p_j \alpha_i \delta_{ij} + 2\sum_i \sum_j p_i p_j \alpha_j \delta_{ij} \right)$$

$$= (1 - F) \left(\mu_{G}^{2} + \sum_{j} p_{j} \sum_{i} p_{i} \alpha_{i}^{2} + \sum_{i} p_{i} \sum_{j} p_{j} \alpha_{j}^{2} \right.$$
$$\left. + \sum_{i} \sum_{j} p_{i} p_{j} \delta_{ij}^{2} + 2\mu_{G} \sum_{j} p_{j} \sum_{i} p_{i} \alpha_{i} + 2\mu_{G} \sum_{i} p_{i} \sum_{j} p_{j} \alpha_{j} \right.$$
$$\left. + 2\mu_{G} \sum_{i} p_{i} \sum_{j} p_{j} \delta_{ij} + 2\sum_{i} p_{i} \alpha_{i} \sum_{j} p_{j} \alpha_{j} + 2\sum_{i} p_{i} \alpha_{i} \sum_{j} p_{j} \delta_{ij} \right.$$
$$\left. + 2\sum_{j} p_{j} \alpha_{j} \sum_{i} p_{i} \delta_{ij} \right) \right.$$
$$\left. = (1 - F) \left(\mu_{G}^{2} + 2\sum_{i} p_{i} \alpha_{i}^{2} + \sum_{i} \sum_{j} p_{i} p_{j} \delta_{ij}^{2} \right) \right.$$

• Combining the simplified two terms together we have that

うへで 14/17

• So

$$E(G_F^2) = \mu_G^2 + 2(1+F)\sum_i p_i \alpha_i^2 + (1-F)\sum_i \sum_j p_i p_j \delta_{ij}^2$$
$$+F\sum_i p_i \delta_{ii}^2 + 4F\sum_i p_i \alpha_i \delta_{ii} + 2F\mu_G\sum_i p_i \delta_{ii}$$

• Now calculate the variance of G_F noting that $E(G_F) = \mu_G + FH$ where $H = \sum_i p_i \delta_{ii}$

• We have that

$$Var(G_F) = E(G_F^2) - [E(G_F)]^2 =$$

$$(1+F)2\sum_i p_i \alpha_i^2 + (1-F)\sum_i \sum_j p_i p_j \delta_{ij}^2$$

$$+F\sum_i p_i \delta_{ii}^2 + 4F\sum_i p_i \alpha_i \delta_{ii} - F^2 H^2$$

$$= (1+F)\sigma_A^2 + (1-F)\sigma_D^2 + 4FD_1 + FD_2 + F(1-F)H^2$$

where $H = \sum_{i} p_i \delta_{ii}$, $D_1 = \sum_{i} p_i \alpha_i \delta_{ii}$, and $D_2 = \sum_{i} p_i \delta_{ii}^2 - H^2$. Note that D_2 is the variance of the δ_{ii} 's

- So the genetic variance for an inbreed populations can be written in terms of five components
- For a non-inbreed population, F = 0 and the genetic variance is $\sigma_A^2 + \sigma_D^2$, as we previously showed.

Terminology and Expressions for Genetic Trait Variance

• The following terms are commonly used for expressing the variances and covariances of trait values

Components	Multi-allelic	Bi-allelic
Additive Variance	$\sigma_A^2 = 2\sum_i p_i \alpha_i^2$	$\sigma_A^2 = 2pq\alpha^2$
Dominance Variance	$\sigma_D^2 = \sum_i \sum_j p_i p_j \delta_{ij}^2$	$\sigma_D^2 = (2pqd)^2$
Inbreeding depression	$H = \sum_{i} p_i \delta_{ii}$	H=-2qpd
Covariance of α_i 's and δ_{ii} 's	$D_1 = \sum_i p_i \alpha_i \delta_{ii}$	$D_1 = 2pqd\alpha(p-q)$
Variance of δ_{ii} 's	$D_2 = \sum_i p_i \delta_{ii}^2 - H^2$	$D_2 = 4pq(1-4pq)d^2$

where $\alpha = \alpha_1 - \alpha_2$ for the bi-allelic case.

- For the bi-allelic case, if the frequency of the two alleles are the same, what is D_1 and D_2 ?
- For the bi-allelic case, if the trait is additive, what is H, D_1 , and D_2 ?