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Introduction to Quantitative Trait Mapping

We previously focused on obtaining variance components of a
quantitative trait to determine the proportion of the variance of the
trait that can be attributed to both genetic (additive and dominance)
and environment (shared and unique) factors

We demonstrated that resemblance of trait values among relatives we
can be used to obtain estimates of the variance components of a
quantitative trait without using genotype data.

Quantitative trait loci (QTL) mapping involves identifying genetic loci
that influence the variation of a quantitative trait.
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Introduction to Quantitative Trait Mapping

There generally is no simple Mendelian basis for variation of
quantitative traits

Some quantitative traits can be largely influenced by a single gene as
well as by environmental factors

Influences on a quantitative trait can be due to a a large number of
genes with similar (or differing) effects

Many quantitative traits of interest are complex where phenotypic
variation is due to a combination of both multiple genes and
environmental factors

Examples: Blood pressure, cholesterol levels, IQ, height, weight, etc.
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Partition of Phenotypic Values

Today we will focus on
I QTL association mapping
I Contribution of a QTL to the variance of a quantitative trait
I Statistical power for detecting QTL in GWAS

Consider once again the classical quantitative genetics model of
Y = G +E where Y is the phenotype value, G is the genotypic value,
and E is the environmental deviation that is assumed to have a mean
of 0 such that E (Y ) = E (G )
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Representation of Genotypic Values

For a single locus with alleles A1 and A2, the genotypic values for the
three genotypes can be represented as follows

Genotype Value =


−a if genotype is A2A2

d if genotype is A1A2

a if genotype is A1A1

If p and q are the allele frequencies of the A1 and A2 alleles,
respectively in the population, we previously showed that

µG = a(p−q) +d(2pq)

and that the genotypic value at a locus can be decomposed into
additive effects and dominance deviations:

Gij = GA
ij + δij = µG + αi + αj + δij
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Decomposition of Genotypic Values

The model can be given in terms of a linear regression of genotypic
values on the number of copies of the A1 allele such that:

Gij = β0 + β1X
ij
1 + δij

where X ij
1 is the number of copies of the type A1 allele in genotype

Gij , and with β0 = µG + 2α2 and β1 = α1−α2 = α, the average effect
of allele substitution.

Recall that α = a+d(q−p) and that α1 = qα and α2 =−pα
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Linear Regression Figure for Genetic Values

Falconer model for single biallelic QTL 

Var (X) = Regression Variance + Residual Variance 
 = Additive Variance + Dominance Variance 
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QTL Mapping

For traits that are heritable, i.e., traits with a non-negligible genetic
component that contributes to phenotypic variability, identifying (or
mapping) QLT that influence the trait is often of interest.

Genome-wide association studies (GWAS) are commonly used for the
identification of QTL

Single SNP association testing with linear regression models are often
used in GWAS

Linear regression models will often include a single genetic marker
(e.g., a SNP) as predictor in the model, in addition to other relevant
covariates (such as age, sex, etc.), with the quantitative phenotype as
the response
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Linear regression with SNPs

Many analyses fit the ‘additive model’

y = β0 + β ×#minor alleles
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Linear regression, with SNPs

An alternative is the ‘dominant model’;

y = β0 + β × (G 6= AA)
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Linear regression, with SNPs

or the ‘recessive model’;

y = β0 + β × (G == aa)
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Linear regression, with SNPs

Finally, the ‘two degrees of freedom model’;

y = β0 + βAa× (G == Aa) + βaa× (G == aa)
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Association Testing with Dependent Samples

The observations in genetic association studies can have several
sources of dependence, including:

I population structure, i.e., ancestry differences among sample individuals
I relatedness among the sampled individuals, some of which might be

known and some unknown.

Failure to appropriately account for this structure can invalidate
association results that are based on an assumption of independence
and population homogeneity.
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Confounding due to Ancestry
Ethnic groups (and subgroups) often share distinct dietary habits and
other lifestyle characteristics that leads to many traits of interest
being correlated with ancestry and/or ethnicity.
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Spurious Association

Quantitative trait association test
I Test for association between genotype and trait value

Consider sampling from 2 populations:

Histogram of Trait Values

Population 1
Population 2

I Blue population has higher trait values.
I Different allele frequency in each population

=⇒ spurious association between trait and genetic marker for samples
containing individuals from both populations
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Incomplete Genealogy
Cryptic and/or misspecified relatedness among the sample individuals
can also lead to spurious association in genetic association studies
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Incomplete Genealogy
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Genotype and Phenotype Data

Linear mixed models have been demonstrated to be a flexible
approach for association testing in samples with population and/or
pedigree structure.

Suppose the data for the genetic association study include genotype
and phenotype on a sample of n individuals

Let Y = (Y1, . . .Yn)T denote the n×1 vector of phenotype data,
where Yi is the quantitative trait value for the ith individual.

Consider testing SNP s in a genome-screen for association with the
phenotype, where Gs = (G s

1 , . . .G
s
n )T is n×1 vector of the genotypes,

where G s
i = 0,1, or 2, according to whether individual i has,

respectively, 0, 1 or 2 copies of the reference allele at SNP s.
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Association Testing with Cryptic Structure
Consider the following model:

Y = Wβ + Gsγ + g + ε

W is an n× (w + 1) matrix of relevant covariates that includes an
intercept

β is the (w + 1)×1 vector of covariate effects, including intercept

γ is the (scalar) association parameter of interest, measuring the
effect of genotype on phenotype

g is a length n random vector of polygenic effects with g∼N(0,σ2
gΨ)

σ2
g represents additive genetic variance and Ψ is a matrix of pairwise

measures of genetic relatedness

ε is a random vector of length n with ε ∼ N(0,σ2
e I)

σ2
e represents non-genetic variance due to non-genetic effects

assumed to be acting independently on individuals
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Mixed Linear Models
For Cryptic Structure

The matrix Ψ will be generally be unknown when there is population
structure (ancestry differences ) and/or cryptic relatedness in the
sample.
Kang et al. [Nat Genet, 2010] proposed the EMMAX linear mixed
model association method that is based on an empirical genetic
relatedness matrix (GRM) Ψ̂ calculated using SNPs from across the
genome. The (i , j)th entry of the matrix is estimated by

Ψ̂ij =
1

S

S

∑
s=1

(G s
i −2p̂s)(G s

j −2p̂s)

2p̂s(1− p̂s)

where p̂s is the sample average allele frequency. S will generally need
to be quite large, e.g., larger than 100,000, to capture fine-scale
structure.

Kang, Hyun Min, et al. (2010) ”Variance component model to account for sample

structure in genome-wide association studies.” Nature genetics 42
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EMMAX Mixed Linear Model
For Cryptic Structure

For genetic association testing, the EMMAX mixed-model approach
first considers the following model without including any of the SNPs
as fixed effects:

Y = Wβ + g + ε (1)

The variance components, σ2
g and σ2

e , are then estimated using either
a maximum likelihood or restricted maximum likelihood (REML),
with Cov(Y) set to σ2

g Ψ̂ + σ2
e I in the likelihood with fixed Ψ̂
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EMMAX Mixed Linear Model
For Cryptic Structure

Once the variance components , σ2
g and σ2

e are then estimated,
association testing of SNP s and phenotype is then based on the
model

Y = Wβ + Gs
γ + g + ε

The EMMAX association statistic is the score statistic for testing the
null hypothesis of γ = 0 using a generalized regression with
Var(Y) = Σ evaluated at Σ̂ = σ̂2

g Ψ̂ + σ̂2
e I

EMMAX calculates σ̂2
g and σ̂2

e only once from model (1) to reduce
computational burden.
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GEMMA Linear Mixed Model
For Cryptic Structure

Zhou and Stephens [2012, Nat Genet] developed a computationally
efficient mixed-model approach named GEMMA

GEMMA is very similar to EMMAX and is essentially based on the
same linear mixed-model as EMMAX

Y = Wβ + Gs
γ + g + ε

However, the GEMMA method is an ”exact” method that obtains
maximum likelihood estimates of variance components σ̂2

g and σ̂2
e for

each SNP s being tested for association.

Zhou and Stephens (2012) ”Genome-wide efficient mixed-model analysis for association

studies” Nature Genetics 44
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Linear Mixed Models
For Cryptic Structure

A number of similar linear mixed-effects methods have recently been
proposed when there is cryptic structure: Zhang at al. [2010, Nat
Genet], Lippert et al. [2011, Nat Methods], Zhou & Stephens [2012,
Nat Genet], and Svishcheva [2012, Nat, Genet], and others.
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Additive Genetic Model

Most GWAS are performed via single SNP association testing under
an additive model.
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Additive Genetic Model

The additive linear regression model also has a nice interpretation, as
we saw from Fisher’s classical quantitative trait model!

The coefficient of determination (r2) of an additive linear regression
model gives an estimate of the proportion of phenotypic variation that
is explained by the SNP (or SNPs) in the model, e.g., the ”SNP
heritability”
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Additive Genetic Model

Consider the following additive model for association testing with a
quantitative trait and a SNP with alleles A and a:

Y = β0 + β1X + ε

where X is the number of copies of the reference allele A.

What would your interpretation of ε be for this particular model?
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Association Testing with Additive Model

Y = β0 + β1X + ε

Two test statistics for H0 : β1 = 0 versus Ha : β1 6= 0

T =
β̂1√

var(β̂1)
∼ tN−2 ≈ N(0,1) for large N

T 2 =
β̂ 2
1

var(β̂1)
∼ F1,N−2 ≈ χ

2
1 for large N

where

var(β̂1) =
σ2

ε

SXX

and SXX is the corrected sum of squares for the Xi ’s
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Statistical Power for Detecting QTL

Y = β0 + β1X + ε

We can also calculate the power for detecting a QTL for a given
effect size β1 for a SNP.

For simplicity, assume that Y has been a standardized so that with
σ2
Y = 1.

Let p be the frequency of the A allele in the population

σ
2
Y = β

2
1 σ

2
X + σ

2
ε = 2p(1−p)β

2
1 + σ

2
ε

Let h2s = 2p(1−p)β 2
1 , so we have σ2

Y = h2s + σ2
ε

Interpret h2s (note that we assume that trait is standardized such that
σ2
Y = 1)
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Statistical Power for Detecting QTL

Also note that σ2
ε = 1−h2s , so we can write Var(β̂1) as the following:

var(β̂1) =
σ2

ε

SXX
≈ σ2

ε

N (2p(1−p))
=

1−h2s
2Np(1−p)

To calculate power of the test statistic T 2 for a given sample size N,
we need to first obtain the expected value of the non-centrality
parameter λ of the chi-squared (χ2) distribution which is the
expected value of the test statistic T squared:

λ = [E (T )]2 ≈ β 2
1

var(β̂1)
=

Nh2s
1−h2s

since h2s = 2p(1−p)β 2
1
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Required Sample Size for Power

Can also obtain the required sample size given type-I error α and
power 1−β , where the type–II error is β :

N =
1−h2s
h2s

(
z(1−α/2) + z(1−β )

)2
where z(1−α/2) and z(1−β) are the (1−α/2)th and (1−β )th quantiles,
respectively, for the standard normal distribution.
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Statistical Power for Detecting QTL
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Genetic Power Calculator (PGC) 
http://pngu.mgh.harvard.edu/~purcell/gpc/ 

23 
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Missing Heritability

• !"#$%='(A1

• D&&06-%1.T01%+(0%-F8.6+??F%1:+??
– >.10+10C%<a%mI4I%-'%mI4d

– h*+,-.-+-./0%-(+.-1C%n%/+(%0E8?+.,0;%
ooIn

 

Disease Number 
of loci 

Percent of Heritability 
Measure Explained 

Heritability  
Measure 

Age-related macular 
degeneration 

5 50% Sibling recurrence 
risk 

Crohn’s disease 32 20% Genetic risk 
(liability) 

Systemic lupus 
erythematosus 

6 15% Sibling recurrence 
risk 

Type 2 diabetes 18 6% Sibling recurrence 
risk 

HDL cholesterol 7 5.2%  Phenotypic 
variance 

Height 40 5% Phenotypic 
variance 

Early onset myocardial 
infarction 

9 2.8% Phenotypic 
variance 

Fasting glucose 4 1.5% Phenotypic 
variance 
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!0,0-.6%2'=0(%O+?6*?+-'(%H$7+*,%2*(60??M
7--8CVV8,B*4:B747+(/+(;40;*Vm8*(60??VB86V
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LD Mapping of QTL
For GWAS, the QTL generally will not be genotyped in a study

#$%&'()*)+,$-$./$,0**********************#$%&'()*1$2)+,$-$./$,0

Q1           M1

Q2           M2

Q1           M2

Q2           M1

Q1           M1

Q2           M2

Q1           M2

Q2           M1

Q1           M1

Q1           M1

Q2           M2

Q2           M2

Q1           M1

Q2           M2

Q1           M1

Q2           M2
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LD Mapping of QTL

Linkage disequilibrium around an 
ancestral mutation 

[Ardlie et al. 2002] 
5 
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LD Mapping of QTL

r2 = LD correlation between QTL and genotyped SNP

Proportion of variance of the trait explained at a SNP ≈ r2h2s

Required sample size for detection is

N ≈ 1− r2h2s
r2h2s

(
z(1−α/2) + z(1−β)

)2
Power of LD mapping depends on the experimental sample size,
variance explained by the causal variant and LD with a genotyped
SNP
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