QTL Association Mapping



Introduction to Quantitative Trait Mapping a3

o We previously focused on obtaining variance components of a
quantitative trait to determine the proportion of the variance of the
trait that can be attributed to both genetic (additive and dominance)
and environment (shared and unique) factors

o We demonstrated that resemblance of trait values among relatives we
can be used to obtain estimates of the variance components of a
quantitative trait without using genotype data.

o Quantitative trait loci (QTL) mapping involves identifying genetic loci
that influence the variation of a quantitative trait.
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Introduction to Quantitative Trait Mapping a3

@ There generally is no simple Mendelian basis for variation of
quantitative traits

@ Some quantitative traits can be largely influenced by a single gene as
well as by environmental factors

o Influences on a quantitative trait can be due to a a large number of
genes with similar (or differing) effects

o Many quantitative traits of interest are complex where phenotypic
variation is due to a combination of both multiple genes and
environmental factors

o Examples: Blood pressure, cholesterol levels, 1Q, height, weight, etc.
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Partition of Phenotypic Values L

o Today we will focus on
» QTL association mapping
» Contribution of a QTL to the variance of a quantitative trait
» Statistical power for detecting QTL in GWAS
o Consider once again the classical quantitative genetics model of
Y = G + E where Y is the phenotype value, G is the genotypic value,

and E is the environmental deviation that is assumed to have a mean
of 0 such that E(Y) = E(G)
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Representation of Genotypic Values

o For a single locus with alleles A; and Ay, the genotypic values for the
three genotypes can be represented as follows

—a
Genotype Value

d

if genotype is AxA»
if genotype is A1A>

if genotype is A1A;

o If p and g are the allele frequencies of the A; and A, alleles,

a
respectively in the population, we previously showed that

U =a(p—q)+d(2pq)
and that the genotypic value at a locus can be decomposed into
additive effects and dominance deviations:

Gj = Gf} + 8 = lg + &t + o + &
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Decomposition of Genotypic Values L

@ The model can be given in terms of a linear regression of genotypic
values on the number of copies of the A; allele such that:

G,'j = ﬁo + Bleij + 5,‘j

where Xl’j is the number of copies of the type A; allele in genotype

Gjj, and with Bo = e +20p and B1 = a1 — 0 = @, the average effect
of allele substitution.

o Recall that @ = a+ d(g— p) and that oy = gqo¢ and o = —po



Linear Regression Figure for Genetic Values

Falconer model for single biallelic QTL

d

My

bb Bb BB

Var (X) = Regression Variance + Residual Variance
= Additive Variance + Dominance Variance



QTL Mapping

o For traits that are heritable, i.e., traits with a non-negligible genetic
component that contributes to phenotypic variability, identifying (or
mapping) QLT that influence the trait is often of interest.

o Genome-wide association studies (GWAS) are commonly used for the
identification of QTL

o Single SNP association testing with linear regression models are often
used in GWAS

o Linear regression models will often include a single genetic marker
(e.g., a SNP) as predictor in the model, in addition to other relevant
covariates (such as age, sex, etc.), with the quantitative phenotype as
the response
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Linear regression with SNPs

Many analyses fit the ‘additive model’

y = Bo+ B x #minor alleles

cholesterol

aa
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Linear regression, with SNPs

An alternative is the ‘dominant model’;

y =Po+ B x(G#AA)

cholesterol

AA Aa aa



Linear regression, with SNPs

or the ‘recessive model’;

y=Bo+B x(G==aa)

cholesterol

AA Aa aa



Linear regression, with SNPs

Finally, the ‘two degrees of freedom model’;

y =PBo+PBas x (G == Aa)+ .. x (G == aa)

E Baa E aai :
0 0 1
0 1 0
A‘A A‘a a‘a
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Association Testing with Dependent Samples )

o The observations in genetic association studies can have several
sources of dependence, including:

» population structure, i.e., ancestry differences among sample individuals
» relatedness among the sampled individuals, some of which might be
known and some unknown.

and population homogeneity.

o Failure to appropriately account for this structure can invalidate
association results that are based on an assumption of independence



Confounding due to Ancestry

o Ethnic groups (and subgroups) often share distinct dietary habits and
other lifestyle characteristics that leads to many traits of interest
being correlated with ancestry and/or ethnicity.

association of interest

Genotype Trait

association



Spurious Association

o Quantitative trait association test

» Test for association between genotype and trait value
o Consider sampling from 2 populations:

Histogram of Trait Values

" Population 1
@ Population 2

» Blue population has higher trait values.
» Different allele frequency in each population

= spurious association between trait and genetic marker for samples
containing individuals from both populations
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Incomplete Genealogy

e
can also lead to spurious association in genetic association studies

o0

¢ ®



Incomplete Genealogy




Genotype and Phenotype Data

o Linear mixed models have been demonstrated to be a flexible
approach for association testing in samples with population and/or
pedigree structure.

@ Suppose the data for the genetic association study include genotype
and phenotype on a sample of n individuals

o Let Y =(Y1,...Y,)" denote the nx 1 vector of phenotype data,
where Y is the quantitative trait value for the jth individual.

o Consider testing SNP s in a genome-screen for association with the
phenotype, where Gs = (G5,...G3)T is nx 1 vector of the genotypes,
where G = 0,1, or 2, according to whether individual i has,
respectively, 0, 1 or 2 copies of the reference allele at SNP s.
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Association Testing with Cryptic Structure ~ )

o Consider the following model:

Y =WpB+Gsy+g+e

o Wiis an nx (w+1) matrix of relevant covariates that includes an
intercept

@ B is the (w+1) x 1 vector of covariate effects, including intercept

@ 7 is the (scalar) association parameter of interest, measuring the
effect of genotype on phenotype

o g is a length n random vector of polygenic effects with g ~ N(0,6g2W)

° Gg% represents additive genetic variance and W is a matrix of pairwise

measures of genetic relatedness

o ¢ is a random vector of length n with & ~ N(0,521)

@ 02 represents non-genetic variance due to non-genetic effects

assumed to be acting independently on individuals
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Mixed Linear Models L
For Cryptic Structure

o The matrix W will be generally be unknown when there is population
structure (ancestry differences ) and/or cryptic relatedness in the
sample.

o Kang et al. [Nat Genet, 2010] proposed the EMMAX linear mixed
model association method that is based on an empirical genetic
relatedness matrix (GRM) W calculated using SNPs from across the
genome. The (i,j)th entry of the matrix is estimated by

‘1\,” - Z (615*2135)(6}5 *2ﬁs)
! 55:1 2135(17f)s)

where ps is the sample average allele frequency. S will generally need

to be quite large, e.g., larger than 100,000, to capture fine-scale
structure.

Kang, Hyun Min, et al. (2010) " Variance component model to account for sample

structure in genome-wide association studies.” Nature genetics 42 = S
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EMMAX Mixed Linear Model
For Cryptic Structure

-

as fixed effects:

o For genetic association testing, the EMMAX mixed-model approach
first considers the following model without including any of the SNPs

Y=WB+g+e¢

(1)
@ The variance components, Gg2 and 662, are then estimated using either
a maximum likelihood or restricted maximum likelihood (REML),
with Cov(Y) set to 62W + 621 in the likelihood with fixed W



EMMAX Mixed Linear Model L
For Cryptic Structure

@ Once the variance components , O'g and Ge2 are then estimated,
association testing of SNP s and phenotype is then based on the
model

Y=WL+Gv+g+e

@ The EMMAX association statistic is the score statistic for testing the
null hypothesis of ¥y =0 using a generalized regression with
Var(Y) = X evaluated at 2 = 6;W + 621

o EMMAX calculates 8; and 62 only once from model (1) to reduce
computational burden.
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GEMMA Linear Mixed Model L
For Cryptic Structure

@ Zhou and Stephens [2012, Nat Genet] developed a computationally
efficient mixed-model approach named GEMMA

o GEMMA is very similar to EMMAX and is essentially based on the
same linear mixed-model as EMMAX

Y=WL+Gv+g+¢

o However, the GEMMA method is an "exact” method that obtains
maximum likelihood estimates of variance components 65 and 62 for
each SNP s being tested for association.

Zhou and Stephens (2012) " Genome-wide efficient mixed-model analysis for association
studies” Nature Genetics 44
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Linear Mixed Models
For Cryptic Structure

@ A number of similar linear mixed-effects methods have recently been
proposed when there is cryptic structure: Zhang at al. [2010, Nat
Genet], Lippert et al. [2011, Nat Methods|, Zhou & Stephens [2012,
Nat Genet], and Svishcheva [2012, Nat, Genet], and others.
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Additive Genetic Model

o Most GWAS are performed via single SNP association testing under
an additive model.

Unrelated Samples

yi:“JrEXi

Trait Value
3-2-101 2 3
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Additive Genetic Model L

o The additive linear regression model also has a nice interpretation, as
we saw from Fisher's classical quantitative trait model!
o The coefficient of determination (r?) of an additive linear regression

model gives an estimate of the proportion of phenotypic variation that

is explained by the SNP (or SNPs) in the model, e.g., the "SNP
heritability”
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Additive Genetic Model

-

o Consider the following additive model for association testing with a
quantitative trait and a SNP with alleles A and a:

Y =PBo+pX+e
where X is the number of copies of the reference allele A.

@ What would your interpretation of € be for this particular model?



Association Testing with Additive Model

Y=Bo+BX+e

A~

@ Two test statistics for Hp : B1 = 0 versus H,: 1 #0

T= LA ~ty_2~ N(0,1) for large N
var(P1)
B

Var(Bl)
where

~Finyo~ 9512 for large N

. 2
var(fr) = <=

Sxx
and Sxx is the corrected sum of squares for the X;'s
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Statistical Power for Detecting QTL L

Y =B+ X+e

o We can also calculate the power for detecting a QTL for a given
effect size By for a SNP.

o For simplicity, assume that Y has been a standardized so that with
2
oo =1.
Y

o Let p be the frequency of the A allele in the population

0% = BEog + o2 =2p(1—p)pi + c?
o Let h? =2p(1—p)B2, so we have 0',2/ = h2+ 02

o Interpret h? (note that we assume that trait is standardized such that
2
oy, =1)
Y
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Statistical Power for Detecting QTL L

o Also note that 62 =1 — h2, so we can write Var(f1) as the following:

2 2 2
o (o o, 1—h
var(fB1) = =% ~ £ S

"~ Sxx N(2p(1-p))  2Np(1-p)

o To calculate power of the test statistic T2 for a given sample size N,
we need to first obtain the expected value of the non-centrality

parameter A of the chi-squared (x2) distribution which is the
expected value of the test statistic T squared:

2 2
A=IE(T 2% ﬁl/\ _ Nhs
ECT) var(f) 1—h

since h? = 2p(1 — p)B2
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Required Sample Size for Power

o Can also obtain the required sample size given type-| error ¢ and
power 1— 3, where the type—Il error is 3 :

1— h?
N =

S

hg

(z1-a/2) +201-p))°

where z1_q/2) and z;_p) are the (1 —a/2)th and (1 — B)th quantiles,
respectively, for the standard normal distribution.
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Statistical Power for Detecting QTL
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http://pngu.mgh.harvard.edu/~purcell/gpc/ 04

Genetic Power Calculator

Genetic Power Calculator

S. Purcell & P. Sham, 2001-2009

This site provides automated power analysis for variance components (VC) quantitative trait locus (QTL) linkage and association tests in sibships. and other
common tests etc to Shaun Purcell

If you use this site. please reference the following Bioinformatics article:

Purcell S, y
design of < and ass
its. Bioinformatics, 19(

03) Ges

genetic studies of complex

Modules

. ; Genetic Power Calculator
Case-control for threshold-selected quantitative traits QTL Association for Sibships
oTL ion for sibships and singl

ominance (s

TDT for discrete traits

DT and paenIDT with ascetfamument |
TDT for threshold-selected quantitative traits otes|

HiNH

sample Size

Sibship Size

—

N

Probability Function Calculator otes.
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Missing Heritability

Age-related macular 5 Sibling recurrence

degeneration risk

Crohn’s disease 32 20% Genetic risk
(liability)

Systemic lupus 6 15% Sibling recurrence

erythematosus risk

Type 2 diabetes 18 6% Sibling recurrence
risk

HDL cholesterol 7 52% Phenotypic
variance

Height 40 5% Phenotypic
variance

Early onset myocardial 9 2.8% Phenotypic

infarction variance

Fasting glucose 4 1.5% Phenotypic
variance

MEWS FEATURE PERSONAL GENOMES

* GWAS works
» Effect sizes are typically small
— Disease: OR~1.1to~1.3

— Quantitative traits: % var explained
<<1%

The case of the missing heritability



http://pngu.mgh.harvard.edu/~purcell/gpc/

e

80 — n=5,000

— n=10,000
— n=20,000
60 = N = 40,000

Power of detection (%)

Al 0.2 0.3 0.4 05
Effect size (% variance explained)

Figure 1 Statistical power of detection in GWAS
for variants that explain 0.1-0.5% of the variation
at a type | error rate of 5 x 107 (calculated using
the Genetic Power Calculator!5). Shown is the
power to detect a variant with a given effect size,
assuming this type | error rate, which is typical for
a GWAS with a sample size of n = 5,000-40,000.
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LD Mapping of QTL

Linkage equilibrium

o For GWAS, the QTL generally will not be genotyped in a study

Linkage disequilibrium
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LD Mapping of QTL

Linkage disequilibrium around an

ancestral mutation
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Nature Reviews | Genetics 5
[Ardlie et al. 2002]
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LD Mapping of QTL

o r? = LD correlation between QTL and genotyped SNP

@ Proportion of variance of the trait explained at a SNP =~ r
o Required sample size for detection is

2h§
Nl_

@ Power of LD mapping depends on the experimental sample size,
SNP

variance explained by the causal variant and LD with a genotyped
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