
Variance Component Estimation with Pedigrees
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Partitioning Variance Review

We previously described a partitioning the total variance of a
quantitative trait (σ2

Y ) in an outbred population into variance due to
additive genetic effects (σ2

A), dominance (σ2
D), epistastis (e.g., for the

two locus case we have σ2
AA, σ2

AD , σ2
DD), and environment or residual

(σ2
E ).

The sum of all those components, aside from environmental variance,
is generally called the “genetic variance” (σ2

G )

We have used the variance decomposition to assess heritability of a
trait.
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Heritability Review

Heritability in the broad and narrow sense provide two measures of
the importance of genetic factors to a trait,

The broad-sense heritability,
σ2
G

σ2
Y

, also called the coefficient of genetic

determination, expressing the ex- tent to which the phenotype is
explained by genotype in a particular population.

The narrow-sense heritability,
σ2
A

σ2
Y

, typically referred to simply as the

“heritability”, measures the degree to which, in the given population,
the offspring phenotype is explained by the parental phenotypes.
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Limitations of other Methods

In practice, many mapping and heritability studies in outbred
populations consider only environmental, additive, and dominance
variance or only environmental and additive variance.

As we have shown, additive variance components can be estimated
using the covariances of the trait values for heritability estimations
with particular types of relatives that do not have dominance effects.

Commonly used methods for estimation of components of variance of
quantitative traits include parent-offspring regression, correlation and
analysis of variance (ANOVA) for trait values of sib and/or half-sib
families, as well as MZ and DZ twins

Such approaches are particularly suited for animal breeding situations
but are not ideal for study populations where family designs are often
unbalanced and for where the available information for different
relationship types may vary.

4 / 22



Variance Components Estimation
with Pedigrees

A more flexible alternative to these types of methods for estimation of
variance components is maximum likelihood (ML) (or restricted
maximum likelihood [REML]) variance-component estimation.

In the last 20 years, this methodology has gained significant interest
for both variance components estimation as well as for the mapping
of quantitative traits.

For the price of assuming a particular distribution, generally
multivariate normal, for the phenotype, the method allows one to
partition the variance into its basic genetic and non-genetic
components, using a sample of individuals of known relationship.
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Variance Components Estimation with Pedigrees

The ML/REML analysis can use information from all types of relative
pairs in the data, without concern for balanced numbers of families of
restricted relationship types

As a result, the information inherently available in the data is used
more efficiently with ML/REML than in methods like ANOVA,
regression, and relative-pair trait correlation methods.

We will focus on estimating variance component with pedigrees using
ML/REML
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ACDE Trait Model: fixed effects and random effects

The ACDE model decomposes the total variance of the phenotype
into four components due to:

I Additive genetic
I Common shared environment
I Dominance genetic effects
I unique Environment effects.

Hence, the term ”ACDE” model
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ACDE Trait Model: fixed effects and random effects

Consider a study that contains measurements for a quantitative trait
of interest for individuals sampled from F families.

Assume the quantitative trait follows the following ACDE model such
that for individual j in family i we have the following:

yij = xTij β +Aij +Dij +Ci + εij

where
I yij is the trait value for the jth individual from family i
I xij is a vector of covariate values for the individual (such as age, sex,

etc.), and β is a vector of fixed effects
I Aij ∼ N(0,σ2

A) is the additive genetic random effect , Dij ∼ N(0,σ2
D) is

the dominance genetic random effect, Ci ∼ N(0,σ2
C ) is the family effect

for family i , and εij ∼ N(0,σ2
E ) is the residual (unique environment) for

individual j from family i .
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ACDE Trait Model

yij = xTij β +Aij +Dij +Ci + εij

Note that Aij is the sum of the additive effects across all loci that
influence the trait for individual j from family i . Similarly Dij is the
sum of all dominance effects across all loci that influence the trait for
the individual.

What is the the expected value of yij , i.e., µij = E (yij)?

What is the variance of yij , i.e, σ2
y = E (yij −µij)

2?
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ACDE Trait Model Mean and Variance

yij = xTij β +Aij +Dij +Ci + εij

µij = xTij β under the ACDE model assumptions.

The four ‘error” components are assumed to be mutually independent
so that the total variance of the trait is the sum of the variance
components

σ
2
y = σ

2
A + σ

2
D + σ

2
C + σ

2
E

So the distribution of yij is normal with mean µij and variance σ2
y , i.e.,

yij ∼ N(µij ,σ
2
y )

=
1√

2πσ2
y

exp

{
−

(yij −µij)
2

2σ2
y

}
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ACDE Trait Model Covariances

We have the means and variances for each of the individuals in the
study.

Individuals in the study are related, so we also need to model the
covariances between relatives.

Now consider two outbred individuals j and k . What are the
covariances for the ACDE components for these two individuals for
each of the four variance components in the ACDE trait model?
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ACDE Trait Model Covariances

Let’s consider the covariance matrix of the shared family component
C.

Let C = (Cj ,Ck)T be the random family and/or shared environment
effects vector for individuals j and k.

If individuals j and k are from the same family, then covariance
matrix of the shared family components for these two individuals is

Cov(C) = σ
2
c

(
1 1
1 1

)
(1)

If individuals j and k are from different families, then covariance
matrix of the shared family effect is

Cov(C) = σ
2
c

(
1 0
0 1

)
(2)

What is the covariance matrix for the additive effects for individuals j
and k?
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ACDE Trait Model

Let A = (Aj ,Ak)T be the random additive effects vector for
individuals j and k. The covariance matrix of the additive effects is

Cov(A) = σ
2
A

(
1 2θjk

2θjk 1

)
(3)

where θjk is the kinship coefficient for individuals j and k

In general, if there are n individuals in a study, then the covariance
matrix of the additive effects is

Cov(A) = 2Θσ
2
A = σ

2
A


1 2θ12 . . . 2θ1n

2θ12 1 . . . 2θ2n
... . . . . . .

...
2θ1n 2θ2n . . . 1

 , (4)
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ACDE Trait Model

The dominance effects covariance matrix with n individuals in a study
is

Cov(D) = σ
2
D∆7 = σ

2
D


1 ∆

(12)
7 . . . ∆

(1n)
7

∆
(12)
7 1 . . . ∆

(2n)
7

... . . . . . .
...

∆
(1n)
7 ∆

(2n)
7 . . . 1

 , (5)

where ∆
(kj)
7 is Jacquard’s identity state 7 for individuals k and j ,

which is the probability that j and k share two alleles IBD.
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ACDE Trait Model

If there are n individuals in a study, then the covariance matrix of the
unique environmental effects (or residuals) is σ2

E I where I is the
identity matrix:

σ
2
E


1 0 . . . 0
0 1 . . . 0
... . . . . . .

...
0 0 . . . 1

 , (6)
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ACDE Trait Model

So for a vector of trait values for n individuals from F families is
y = (y1,y2, . . . ,yn)T , we have that the Cov(y) = Ω where

Ω = 2Θσ
2
A + σ

2
D∆7 + σ

2
CΦC + σ

2
E I

where ΦC has (j ,k)th entry equal to 1 if j and k are from the same
family, and 0 otherwise.
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Multivariate Normal Distribution of Trait

When considering the distribution of all of the trait values of the n
sample individuals, y is often molded as a multivariate normal
distribution and the log likelihood function for y is

l(y|V,β ) =−n

2
ln 2π− 1

2
ln |Ω|

−1

2
(y−Xβ )TΩ−1(y−Xβ )

where V = [σ2
A,σ

2
D ,σ

2
C ,σ

2
E ], is a vector of variance component

parameters, β is a vector of fixed effects, Ω is the covariance matrix
Cov(y) and is a function of V and |Ω| is the determinant of Ω.

Obtaining maximum likelihood estimates for the fixed effects and the
variance components is not trivial!
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Maximum Likelihood (ML) Estimation

Maximum-likelihood estimation of variance components does not, in
general, take into account the loss in degrees of freedom that results
from estimation of the fixed effects, and, as a result, ML estimators
tend to be biased.

In particular, estimates of the variance components are generally
downwardly biased, with the bias increasing as the number of fixed
effects increases.

If the sample size is small, this bias can become quite substantial.
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Restricted (or Residual) Maximum Likelihood
(REML) Estimation

An alternative to ML estimation is REML estimation (Searle et al.
1992), which essentially maximizes only that portion of the likelihood
that depends on the variance components and not on the fixed effects.

Hence, bias of this type is re- moved by REML in a manner analogous
to the removal of bias in a variance estimator by dividing by the
degrees of freedom rather than by dividing by the sample size.

REML, instead of using the data vector y directly, is based on a linear
transformation of the data, where the transformation is chosen in
such a way that the fixed effects are eliminated from the model.
Given the mixed

19 / 22



REML

Consider the mixed model

y = Xβ + g + ε

where g = A+D is the polygenic effect of the trait containing both
the additive and dominance effects of all of the loci that influence the
trait. We could easily include a shared environmental effect (C) for
families as well), but assume, without loss of generality, that the
family effect (C) is negligible for this particular trait.

Consider a matrix K such that KX = 0. Applying this transformation
to the above mixed model equation results in what equation?
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REML

Ky = Kg + Kε

If y is multivariate normal with mean Xβ and variance Ω, then Ky is
also multivariate normal.

What is the mean and variance of Ky?
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REML

If matrix K has the property that KX = 0. Applying this
transformation to the above mixed model equation results in

Ky = Kg + Kε

The mean of Ky is 0 and variance is KΩKT

REML then proceeds as ML, but with the transformed data vector
and covariance matrix

Although REML requires one to compute the matrix K, this matrix
can be formulated only in terms of y, X, and Ω.
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