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Introduction to Quantitative Genetics

Historical Background

I Quantitative genetics is the study of continuous or
quantitative traits and their underlying mechanisms.

I The main principals of quantitative genetics developed in the
20th century was largely in response to the rediscovery of
Mendelian genetics.

I Mendelian genetics in 1900 centered attention on the
inheritance of discrete characters, e.g., smooth vs. wrinkled
peas, purple vs. white flowers.

I This focus was in stark contrast to the branch of genetic
analysis by Sir Francis Galton in the 1870’s and 1880’s who
focused on characteristics that were continuously variable and
thus, not clearly separable into discrete classes.
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Historical Background

I A contentious debate ensued between Mendelians and
Biometricians regarding whether discrete characteristics have
the same hereditary and evolutionary properties as
continuously varying characteristics.

I The Mendelians (led by William Bateson) believed that
variation in discrete characters drove evolution through
mutations with large effects

I The Biometricians (led by Karl Pearson and W.F.R. Weldon)
viewed evolution to be the result of natural selection acting on
continuously distributed characteristics.

I This eventually led to a fusion of genetics and Charles
Darwin’s theory of evolution by natural selection: main
principals of quantitative genetics, developed independently by
Ronald Fisher (1918) and Sewall Wright (1921), arguable the
two most prominent evolutionary biologists.
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Historical Background
I This eventually led to a fusion of genetics and Charles

Darwin’s theory of evolution by natural selection: main
principals of quantitative genetics, developed independently by
Ronald Fisher (1918) and Sewall Wright (1921), arguable the
two most prominent evolutionary biologists,.

I Interestingly, Galton’s methodological approaches to
continuously distributed traits marked the founding of the
Biometrical school, which is what many consider to be the
birth of modern statistics (see Steve Stigler’s book The
history of statistics)

I Karl Pearson was inspired greatly by Galton, and he went on
to develop a number of methods for the analysis of
quantitative traits.

I We will talk more about Galton and Pearson later on in this
course.
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I One of the central goals of quantitative genetics is the
quantification of the correspondence between phenotypic and
genotypic values

I It is well accepted that variation in quantitative traits can be
attributable to many, possibly interacting, genes whose
expression may be sensitive to the environment

I Quantitative geneticists are often focused on partitioning the
phenotypic variance into genetic and nongenetic components.

I Classical quantitative genetics started with a simple model:
Phenotype = Genetic Value + Environmental Effects.
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Partitioning of Phenotypic and Genotypic Variance

I A standard approach for partitioning the phenotypic variance
is to model the phenotypic value of an individual Y to be the
sum of the total effect of all genetic loci on the trait, which
we will denote as the genotypic value G , and the total
environmental effect or environmental deviation, which we will
denote as E , such that:

Y = G + E

I From the properties of covariances between random variable,
we can show that the covariance between phenotype and
genotype values can be written as

cov(Y ,G ) = σY ,G = σ2G + σG ,E
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Broad Sense Heritability

I And the squared correlation coefficient is

ρ2(Y ,G ) =

(
σY ,G
σY σG

)2

=

(
σ2G + σG ,E

)2
σ2Y σ

2
G

I Note that if we assume that there is no
genotype-environmental covariance, i.e., if σG ,E = 0, then

ρ2(Y ,G ) reduces to
σ2
G

σ2
Y

I The quantity H2 =
σ2
G

σ2
Y

is generally referred to as the broad

sense heritability and it is the proportion of the total
phenotypic variance that is genetic
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Broad Sense Heritability

I Note that that the covariance between genotypic values and
environmental deviations causes the phenotype-genotype
covariance to deviate from σ2G .

I What impact does a positive (or negative) covariance between
genotype and environment have on the correlation between
genotype and phenotype?
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Characterizing Single Locus Influence on a
Phenotype

I The genotype value G in the phenotype partition Y = G + E
can be viewed as the expected phenotype contribution (for a
given set of genotypes) resulting from the joint expression of
all of the genes underlying the trait.

I For a multilocus trait, G can potentially be a very
complicated function.

I Let’s consider for now the contribution of only a single
autosomal locus to the phenotype. For simplicity, we will
assume that the locus has two alleles.
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Characterizing Influence of a Single Locus on a
Phenotype

I The genotypic values for a bi-allelic locus with alleles D and d
can be represented as follows:

Genotype Value =


0 if genotype is dd
(1 + k)a if genotype is Dd
2a if genotype is DD

(1)

I Note that we can transform the genotype values so that the
homozygous dd haves a mean genotype value of 0 by
subtracting the mean genotypic value for dd from each
measure.
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Characterizing Single Locus Influence on Phenotype

Mean Genotype Value =


0 if genotype is dd
(1 + k)a if genotype is Dd
2a if genotype is DD

(2)

I 2a represents the difference in mean phenotype values for the
dd and DD homozygotes, and k is a measure of dominance.

I If k = 0, then the alleles D and d behave in an additive
fashion

I if k > 0 implies that D exhibits dominance over d . If k = 1
then there is complete dominance. Similarly, k < 0 implies
that d exhibits dominance over D.

I The locus is said to exhibit overdominance if k > 1, since
then mean phenotype expression of the heterozygotes exceeds
that of both homozygotes. The locus exhibits
underdominance when When k < −1 .
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Example: Fecundity (Litter Size) in Merino Sheep
I Litter size in sheep is known to be polygenic
I In Booroola Merino sheep, however, litter size is largely

determined by a single polymorphic locus in the Booroola
gene (Piper and Bindon 1988).

I The Booroola fecundity gene (FecB) located on sheep
chromosome 6 increases ovulation rate and litter size in sheep
and is inherited as a single autosomal locus.

I For the three genotypes at this gene, the mean litter sizes for
685 recorded pregnancies are

Genotype Mean Litter Size

bb 1.48 (s.e. =.09)
Bb 2.17 (s.e. =.08)
BB 2.66 (s.e. =.09)

I Calculate the dominance coefficient k for this locus.
I Is there significant evidence of a dominance effect?



Introduction to Quantitative Genetics

Example: Fecundity (Litter Size) in Merino Sheep

Genotype Mean Litter Size

bb 1.48 (s.e. =.09)
Bb 2.17 (s.e. =.08)
BB 2.66 (s.e. =.09)

I To estimate a, we have that the average of the difference
between the mean genotype values of BB and bb is:
2â = 2.66 − 1.48 = 1.18, so â = 0.59

I Use the difference between the genotype mean values for bb
and Bb to get an estimate for k . We have that
(1 + k̂)â = 2.17 − 1.48 = .69. Substituting our estimate for â
and solving for k̂ , we have that k̂ = .1695
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Example: Fecundity (Litter Size) in Merino Sheep
I To determine if there is a significant dominance effect, i.e., if

k is significantly different from 0, we can perform a simple
hypothesis test.

I Let W̄ be the average of the two mean homozygous genotype
values. Under the null hypothesis of no dominance effect, the
expected value of W̄ , E [W̄ ], is equal to the mean of the
heterozygote genotype value. Using the standard errors of the
mean genotype values, which are are approximately equal to
.09 for each of the homozygous genotypes, a z-statistic for the
observed data under the null hypothesis is

Z =
w̄ − 2.17√
var(w̄)

=
2.07 − 2.17

.09
√

1/2
=

−.1
.0636

= −1.572

I Using a two-sided test, the p-value for the z-statistic is around
.12. So there is no significant evidence of a dominance effect
at the .05 level.


