
Aaron Baraff
STAT 551

Homework #4
11/20/2014

1. (a) For full siblings (k0 = 1/4, k1 = 1/2, and k2 = 1/4) we have expected value
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≈ 1.563× 10−5,

which yields the following 95% confidence interval for θ̄∗:
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≈ 0.2500± 1.960 · 0.003953 = (0.2423, 0.2577).

(b) For first cousins (k0 = 3/4, k1 = 1/4, and k2 = 0) we have expected value
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≈ 5.859× 10−6,

which yields the following 95% confidence interval for θ̄∗:
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≈ 0.0625± 1.960 · 0.002421 = (0.05776, 0.06724).
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For double first cousins (k0 = 9/16, k1 = 3/8, and k2 = 1/16) we have expected value
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which yields the following 95% confidence interval for θ̄∗:
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≈ 0.1250± 1.960 · 0.003423 = (0.1183, 0.1317).

2. Note: All of the following numbers were computed using PEDSTATS.

(a) The estimate of correlation in BMI for full siblings is ρ̂FS = 0.2720, which leads to the
following estimate for heritability:

ĥ2FS =
ρ̂FS

2θFS
=

0.2720

2 · 1
4

= 2 · 0.2720 = 0.5440.

This estimate assumes that we have both negligible dominance and negligible gene-
environmental interaction for BMI.

(b) In these data, BMI correlation can be calculated using only 126 half-sibling pairs com-
pared to 19,528 full sibling pairs and 14,032 parent-offspring pairs. Because of this,
our estimator ρ̂HS will be quite variable. Furthermore, since the kinship coefficient for
half-sibling pairs is half that of full sibling and parent-offspring pairs, the estimator ĥ2HS
will have four times the variance as the estimators resulting from those closer relatives.
Therefore, the heritability estimate from half-sibling pairs for these data is not very
reasonable compared to those from full sibling and parent-offspring pairs.

(c) The estimate of correlation in BMI for full siblings is ρ̂PO = 0.2092, which leads to the
following estimate for heritability:

ĥ2PO =
ρ̂PO

2θPO
=

0.2092

2 · 1
4

= 2 · 0.2092 = 0.4184.

(d) Stratifying the data by sex results in the following estimates for correlation and heri-
tability for full sibling and parent-offspring pairs:
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Full Sibling Parent-Offspring

ρ̂ ĥ2 ρ̂ ĥ2

Female 0.2898 0.5796 0.2415 0.4830
Male 0.2767 0.5534 0.1941 0.3882

For the full sibling pairs, the differences between the estimates are quite small. For the
parent-offspring pairs, these differences are a bit larger but still rather small. There does
not appear to be strong evidence of a sex effect with BMI in these data. If we knew the
variances of these estimates, we could perform a formal hypothesis test. However, the
dependencies inherent in the pedigree data make this difficult.

3. Note: All of the following numbers were computed using R.

(a) The estimate of correlation in BMI for MZ twins is ρ̂MZ = 0.6986, which leads to the
following estimate for heritability:

ĥ2MZ =
ρ̂MZ

2θMZ
=

0.6986

2 · 1
2

= 0.6986.

(b) The estimate of correlation in BMI for DZ twins is ρ̂DZ = 0.3517, which leads to the
following estimate for heritability:

ĥ2DZ =
ρ̂DZ

2θDZ
=

0.3517

2 · 1
4

= 2 · 0.3517 = 0.7034.

(c) Using both MZ and DZ correlations, we can estimate heritability by

ĥ2Both = 2 (ρ̂MZ − ρ̂DZ) = 2 (0.6986− 0.3517) = 2 · 0.3469 = 0.6939.

(d) Using both MZ and DZ correlations, we can also estimate the shared environmental
variance by

σ̂2
C = 2ρ̂DZ − ρ̂MZ = 2 · 0.3517− 0.6986 = 0.004759.

Based on this estimate, less than half of 1% of the variance of BMI is due to shared
environment. Hence, there is not very strong evidence of a shared environmental effect
in these data.

(e) Stratifying the data by sex results in the following estimates for correlation, heritability,
and shared environmental variance for MZ and DZ twins:
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MZ Twins DZ Twins Both

ρ̂ ĥ2 ρ̂ ĥ2 ĥ2 σ̂2
C

Female 0.7111 0.7111 0.3541 0.7082 0.7141 -0.00294
Male 0.6406 0.6406 0.2982 0.5964 0.6847 -0.04417

For each set of twins, the differences between the correlation estimates are larger than
we saw in Problem 2, indicating a possible sex effect with BMI. However, when both sets
of twins are used to estimate heritability, the difference between the estimates is quite
small. There may be some evidence that females have higher heritability than males,
but as with Problem 2 it is hard to say whether this sex effect is significant. (Note: The
negative estimates for shared environmental variance indicate that there is no evidence
of a shared environmental effect.)

4. First, recall that the family study from Problem 2 resulted in BMI correlation estimates of
0.2720 for full sibling pairs and 0.2092 for parent-offspring pairs with little evidence of a sex
effect. These estimates are relatively consistent with other BMI family studies summarized
in Table II of the article. For example, the two large Canada studies of Bouchard et al.
(1987) and Perusse et al. (1988) give full sibling correlation estimates of 0.26 and 0.31 and
parent-offspring correlation estimates of 0.23 and 0.20, respectively. The Norway study of
Tambs et al. (1991) also resulted in similar numbers, sibling correlations that ranged from
0.21 to 0.26 by sex and parent-offspring correlations that ranged from 0.17 to 0.21 by sex.
This study also agrees with my conclusion that there isn’t much evidence of a sex effect in
the family study data.

Next, recall that the twin study from Problem 3 resulted in BMI correlation estimates of
0.6986 for MZ twins and 0.3517 for DZ twins with a combined heritability estimate of 0.6939
and some possible evidence of higher heritability among females. As with the family study,
these estimates (and their corresponding heritability estimates) are relatively consistent with
other BMI twin studies summarized in Table I of the article. For example, the large and
highly published NAS-NRC sample studied by Feinlieb et al. (1977), Fabsitz et al. (1980,
1992), Stunkard et al. (1986), and Selby et al. (1991) results in heritability estimates between
0.64 and 0.82 at the time of induction into the sample. Another large sample from the Finnish
Twin Registry used by Turula et al. (1990), Korkeila et al. (1991), and Korkeila et al. (1995)
gives heritability estimates between 0.61 and 0.72.

Many of the these BMI studies also stratify by age, which results in correlation (and heri-
tability) estimates that decrease with increasing age. This makes sense because as people get
older, environmental effects will begin to dominate genetic effects. When stratifying by sex,
many of the twin studies appear to show higher heritability estimates for males, which is the
opposite of the results from Problem 3. However, the Danish twin study of Herskind et al.
(1996) shows higher heritability estimates for females, but this sample contains twins of age
46-76, which is older than most of the other studies. We were not provided with the ages of
the subjects for our twin study, so it’s difficult to know how to make a proper comparison.
This shows the importance of stratifying by or controlling for covariates like sex and age.
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