Stat 551

Homework 2

Alden Timme

Due Date: Thursday, October 23

1

(a) First, recall that $\sum_{i} p_i \alpha_i = 0$, or, in the bi-allelic case, $p\alpha_1 + q\alpha_2 = 0$. Using this, we have

$$2pq(\alpha_1 - \alpha_2)^2 = 2pq(\alpha_1^2 - 2\alpha_1\alpha_2 + \alpha_2^2)$$

= $2pq\alpha_1^2 - 4pq\alpha_1\alpha_2 + 2pq\alpha_2^2$
= $2p(1-p)\alpha_1^2 - 4pq\alpha_1\alpha_2 + 2q(1-q)\alpha_2^2$
= $2p\alpha_1^2 - 2p^2\alpha_1^2 - 4pq\alpha_1\alpha_2 + 2q\alpha_2^2 - 2q^2\alpha_2^2$
= $2(p\alpha_1^2 + q\alpha_2^2) - 2p^2\alpha_1^2 - 4pq\alpha_1\alpha_2 - 2q^2\alpha_2^2$
= $2(p\alpha_1^2 + q\alpha_2^2) - 2(p^2\alpha_1^2 + 2pq\alpha_1\alpha_2 + q^2\alpha_2^2)$
= $2(p\alpha_1^2 + q\alpha_2^2) - 2(\underbrace{p\alpha_1 + q\alpha_2}_{0})^2$
= $2(p\alpha_1^2 + q\alpha_2^2)$

(b) Denoting β_{ij} the breeding value of an individual with genotype $A_i A_j$, we wish to find $\text{Cov}(\beta, \delta)$, the covariance between breeding values and the dominance effects at a bi-allelic locus.

$$\operatorname{Cov}(\beta, \delta) = \mathbb{E}[\beta\delta] - \mathbb{E}[\beta]\mathbb{E}[\delta]$$

but as we showed in class, $\mathbb{E}[\delta] = 0$. Therefore, we have

$$\begin{aligned} \operatorname{Cov}(\beta,\delta) &= \mathbb{E}[\beta\delta] \\ &= p^2 \beta_{11} \delta_{11} + 2pq \beta_{12} \delta_{12} + q^2 \beta_{22} \delta_{22} \\ &= p^2 \left(2q \left[a + d(q-p) \right] \right) \left(-2q^2 d \right) + 2pq \left((q-p) \left[a + d(q-p) \right] \right) \left(2pqd \right) + q^2 \left(-2p \left[a + d(q-p) \right] \right) \left(-2p^2 d \right) \\ &= \left(-4p^2 q^3 d + 4p^2 q^2 (q-p) d + 4p^3 q^2 d \right) \left(a + d(q-p) \right) \\ &= \left(-4p^2 q^3 d + 4p^2 q^3 d - 4p^3 q^2 d + 4p^3 q^2 d \right) \left(a + d(q-p) \right) \\ &= 0 \end{aligned}$$

 $\mathbf{2}$

(a) The mean trait value is given by

$$\mu_G = 1.2p^2 + 1.6 \times 2pq + 0.7q^2$$

= 1.2p² + 3.2p(1 - p) + 0.7(1 - p)²
= 1.2p² + 3.2p - 3.2p² + 0.7(1 - 2p + p²)
= 1.2p² + 3.2p - 3.2p² + 0.7 - 1.4p + 0.7p²
= -1.3p² + 1.8p + 0.7

Maximizing, we have

$$\frac{\partial \mu_G}{\partial p} = -2.6p + 1.8$$
$$\Rightarrow p^* = \frac{9}{13} \approx 0.692$$

So the frequencies that maximize the mean trait value are $p = \frac{9}{13} \approx 0.692$ (the frequency for A_1) and $q = \frac{4}{13} \approx 0.308$ (the frequency for A_2). The maximum mean trait value is then

$$\mu_G = 1.2p^2 + 1.6 \times 2pq + 0.7q^2 \\\approx 1.323$$

- (b) The minimum mean trait value is obtained when p = 0. This is when the allele frequency of A_1 is 0 and the allele frequency of A_2 is 1, yielding a mean trait value of 0.7.
- (c) Using our additive model, we have a = 0.25 and d = 0.65, yielding, when we use $p = p^* \approx 0.692$,

$$\alpha_1 = q (a + d(q - p)) = 0$$

 $\alpha_2 = -p (a + d(q - p)) = 0$

so the additive effects are both 0, and therefore the breeding values and additive variance component are all also 0.

(d) The dominance effects at the locus are

$$\delta_{11} = -2q^2 d \approx -0.123$$
$$\delta_{12} = 2pqd \approx 0.277$$
$$\delta_{22} = -2p^2 d \approx -0.623$$

which yield a dominance variance component of

$$\sigma_D^2 = (2pqd)^2 \approx 0.0767$$