Stat 551

Homework 2

Alden Timme

Due Date: Thursday, October 23

1
(a) First, recall that $\sum_{i} p_{i} \alpha_{i}=0$, or, in the bi-allelic case, $p \alpha_{1}+q \alpha_{2}=0$. Using this, we have

$$
\begin{aligned}
2 p q\left(\alpha_{1}-\alpha_{2}\right)^{2} & =2 p q\left(\alpha_{1}^{2}-2 \alpha_{1} \alpha_{2}+\alpha_{2}^{2}\right) \\
& =2 p q \alpha_{1}^{2}-4 p q \alpha_{1} \alpha_{2}+2 p q \alpha_{2}^{2} \\
& =2 p(1-p) \alpha_{1}^{2}-4 p q \alpha_{1} \alpha_{2}+2 q(1-q) \alpha_{2}^{2} \\
& =2 p \alpha_{1}^{2}-2 p^{2} \alpha_{1}^{2}-4 p q \alpha_{1} \alpha_{2}+2 q \alpha_{2}^{2}-2 q^{2} \alpha_{2}^{2} \\
& =2\left(p \alpha_{1}^{2}+q \alpha_{2}^{2}\right)-2 p^{2} \alpha_{1}^{2}-4 p q \alpha_{1} \alpha_{2}-2 q^{2} \alpha_{2}^{2} \\
& =2\left(p \alpha_{1}^{2}+q \alpha_{2}^{2}\right)-2\left(p^{2} \alpha_{1}^{2}+2 p q \alpha_{1} \alpha_{2}+q^{2} \alpha_{2}^{2}\right) \\
& =2\left(p \alpha_{1}^{2}+q \alpha_{2}^{2}\right)-2(\underbrace{p \alpha_{1}+q \alpha_{2}}_{0})^{2} \\
& =2\left(p \alpha_{1}^{2}+q \alpha_{2}^{2}\right)
\end{aligned}
$$

(b) Denoting $\beta_{i j}$ the breeding value of an individual with genotype $A_{i} A_{j}$, we wish to find $\operatorname{Cov}(\beta, \delta)$, the covariance between breeding values and the dominance effects at a bi-allelic locus.

$$
\operatorname{Cov}(\beta, \delta)=\mathbb{E}[\beta \delta]-\mathbb{E}[\beta] \mathbb{E}[\delta]
$$

but as we showed in class, $\mathbb{E}[\delta]=0$. Therefore, we have

$$
\begin{aligned}
\operatorname{Cov}(\beta, \delta) & =\mathbb{E}[\beta \delta] \\
& =p^{2} \beta_{11} \delta_{11}+2 p q \beta_{12} \delta_{12}+q^{2} \beta_{22} \delta_{22} \\
& =p^{2}(2 q[a+d(q-p)])\left(-2 q^{2} d\right)+2 p q((q-p)[a+d(q-p)])(2 p q d)+q^{2}(-2 p[a+d(q-p)])\left(-2 p^{2} d\right) \\
& =\left(-4 p^{2} q^{3} d+4 p^{2} q^{2}(q-p) d+4 p^{3} q^{2} d\right)(a+d(q-p)) \\
& =\left(-4 p^{2} q^{3} d+4 p^{2} q^{3} d-4 p^{3} q^{2} d+4 p^{3} q^{2} d\right)(a+d(q-p)) \\
& =0
\end{aligned}
$$

2
(a) The mean trait value is given by

$$
\begin{aligned}
\mu_{G} & =1.2 p^{2}+1.6 \times 2 p q+0.7 q^{2} \\
& =1.2 p^{2}+3.2 p(1-p)+0.7(1-p)^{2} \\
& =1.2 p^{2}+3.2 p-3.2 p^{2}+0.7\left(1-2 p+p^{2}\right) \\
& =1.2 p^{2}+3.2 p-3.2 p^{2}+0.7-1.4 p+0.7 p^{2} \\
& =-1.3 p^{2}+1.8 p+0.7
\end{aligned}
$$

Maximizing, we have

$$
\begin{aligned}
\frac{\partial \mu_{G}}{\partial p} & =-2.6 p+1.8 \\
& \Rightarrow p^{*}=\frac{9}{13} \approx 0.692
\end{aligned}
$$

So the frequencies that maximize the mean trait value are $p=\frac{9}{13} \approx 0.692$ (the frequency for A_{1}) and $q=\frac{4}{13} \approx 0.308$ (the frequency for A_{2}).
The maximum mean trait value is then

$$
\begin{aligned}
\mu_{G} & =1.2 p^{2}+1.6 \times 2 p q+0.7 q^{2} \\
& \approx 1.323
\end{aligned}
$$

(b) The minimum mean trait value is obtained when $p=0$. This is when the allele frequency of A_{1} is 0 and the allele frequency of A_{2} is 1 , yielding a mean trait value of 0.7 .
(c) Using our additive model, we have $a=0.25$ and $d=0.65$, yielding, when we use $p=p^{*} \approx 0.692$,

$$
\begin{aligned}
& \alpha_{1}=q(a+d(q-p))=0 \\
& \alpha_{2}=-p(a+d(q-p))=0
\end{aligned}
$$

so the additive effects are both 0 , and therefore the breeding values and additive variance component are all also 0 .
(d) The dominance effects at the locus are

$$
\begin{aligned}
& \delta_{11}=-2 q^{2} d \approx-0.123 \\
& \delta_{12}=2 p q d \approx 0.277 \\
& \delta_{22}=-2 p^{2} d \approx-0.623
\end{aligned}
$$

which yield a dominance variance component of

$$
\sigma_{D}^{2}=(2 p q d)^{2} \approx 0.0767
$$

