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Summary

A Quasi-Newton Restricted Maximum Likelihood algorithm which approximates the Hessian matrix with the av-
erage of observed and expected information is described for the estimation of covariance components or covariance
functions under a linear mixed model. The computing strategy outlined relies on sparse matrix tools and automatic
differentiation of a matrix, and does not require inversion of large, sparse matrices.
For the special case of a model with only one random factor and equal design matrices for all traits, calculations
to evaluate the likelihood, first and ‘average’ second derivatives can be carried out trait by trait, collapsing com-
putational requirements of a multivariate analysis to those of a series of univariate analyses. This is facilitated
by a canonical decomposition of the covariance matrices and corresponding transformation of the data to new,
uncorrelated traits.
The rank of the estimated genetic covariance is determined by the number of non-zero eigenvalues of the canonical
decomposition, and thus can be reduced by fixing a number of eigenvalues at zero. This limits the number of
univariate analyses needed to the required rank. It is particularly useful for the estimation of covariance function
when a potentially large number of highly correlated traits can be described by a low order polynomial.
Keywords : REML, average information, covariance components, reduced rank, covariance function, equal design
matrices

INTRODUCTION

Estimation of (co)variance components by Restricted Maximum Likelihood (REML) fitting an animal model to
date is mainly carried out using a derivative-free (DF) algorithm as initially proposed by Graser et al. (1987). While
this has been found to be slow to converge, especially for multi-trait and multi-parameter analyses, it does not re-
quire the inverse of a large matrix and can be implemented efficiently using sparse matrix storage and factorisation
techniques, making it computationally feasible for models involving tens of thousands of animals.
Recently there has been renewed interest in algorithms utilising derivatives of the likelihood function to locate
its maximum. This has been furthered by technical advances, making computations faster and allowing larger
and larger matrices to be stored. Moreover, the rediscovery of Takahashi et al.’s (1973) algorithm to invert large
sparse matrices has removed most of the constraints on algorithms imposed previously by the need to invert large
matrices.
In particular, “average information” (AI) REML, a Quasi-Newton algorithm which requires first derivatives of the
likelihood but replaces second derivatives with the average of the observed and expected information, described by
Johnson and Thompson (1995) has been found to be computationally highly advantageous over DF procedures.
It is well recognised that for several correlated traits, most information available is contained in a subset of the
traits or linear combinations thereof. This subset is the smaller the higher the correlations between traits. More
technically, several eigenvalues of the corresponding covariance matrix between traits are very small or zero. If
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a modified covariance matrix were obtained by setting all small eigenvalues to zero and backtransforming to the
original scale (using the eigenvectors corresponding to non-zero eigenvalues), it would have reduced rank.
There has been interest in reduced rank covariance matrices in several areas. Wiggans et al. (1995; unpublished)
collapsed the multivariate genetic evaluation for 30 traits (10 test day records each for milk, fat and protein yield
in dairy cows) to the equivalent of 5 univariate analyses by reducing the rank of the genetic covariance matrix and
exploiting a transformation to canonical scale. Kirkpatrick and Heckman (1989) introduced the concept of ‘covari-
ance functions’, expressing the covariance between traits as a higher order polynomial function. Polynomials can
be fitted to full or reduced order. In the latter case, the resulting covariance matrix has reduced rank, i.e. a number
of zero eigenvalues (Kirkpatrick et al., 1990).
The covariance function (CF) model was developed with the analysis of “traits” with potentially infinitely many
repeated, or almost repeated records in mind, where the phenotype or genotype of individuals is described by a
function rather than a finite number of measurements (Kirkpatrick and Heckman, 1989). A typical example is
growth curve of an animal. Hence, in essence, CFs are the infinite-dimensional equivalent of covariance matrices.
Analysis under a CF model implies that coefficients of the CF are estimated rather than individual covariances as
under the usual multivariate, “finite” linear model; see Kirkpatrick et al. (1990) for further details.
While it is possible to modify an estimated covariance matrix to reduce its rank (as done by Kirkpatrick et al.
(1990 and 1994)), it would be preferable to impose restrictions on the rank of covariance matrices ‘directly’ during
(REML) estimation. Ideally, this could be done increasing the order of fit (i.e. rank allowed) sequentially until an
additional non-zero eigenvalue does not increase the likelihood significantly.
Conceptually, this could be implemented simply by reparameterising, to the eigenvalues and corresponding eigen-
vectors of a covariance matrix, and fixing the required number of eigenvalues at zero. Practical applications of
such reparameterisations, however, have been restricted to simple animal models with equal design matrices for
all traits; see Jensen and Mao (1988) for a review. For these, a canonical decomposition of the genetic and residual
covariance matrix together yields a transformation to uncorrelated variables with unit residual variance, leaving
the number of parameters to be estimated unchanged (for full rank).
Meyer and Hill (1997) described how REML estimates of CFs or, more precisely, their coefficients could be
obtained using a DF algorithm through a simple reparameterisation of the variance component model. However,
they found it slow to converge for orders of fit greater than 3 or 4. Moreover, for simulated data sets the DF
algorithm failed to locate the maximum of the likelihood accurately in several instances, especially if CFs were
fitted to a higher order than simulated.
This paper reviews an AI-REML algorithm for the general, multivariate case, presenting a computing strategy
which does not require sparse matrix inversion. Subsequently, simplifications for the special case of a simple
animal model with equal design matrices for all traits are considered. Additional reductions in computational
requirements are shown for the estimation of reduced rank genetic covariance matrices or reduced order CFs.

THE GENERAL CASE

Model of analysis

Consider the multivariate linear mixed model for t traits

y= X!+Zu+ e (1)

with y, !, u and e denoting the vector of observations, fixed effects, random effects and residual errors, respectively,
and X and Z are the incidence matrices pertaining to ! and u. Let V (u) =G, V (e) = R andCov(u,e�) = 0, so that
V (y) = V= ZGZ�+R.
For an animal model, u always includes the vector of animals’ additive genetic effects (a). In addition, it may
contain other random effects, such as animals’ maternal genetic effects, permanent environmental effects due to
the animal or its dam, or common environmental effects such as litter effects.
Let "A = {#Ai j} , denote the t× t matrix of additive genetic covariances. For u= a this givesG= "A⊗A where A
is the numerator relationship matrix and �⊗� denotes the direct matrix product. If other random effects are fitted, G
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is expanded correspondingly; see Meyer (1991) for a more detailed description. Assuming y is ordered according
to traits within animals,

R=
N

$
i=1

+Ri (2)

where is N the number of animals which have records, and $+ denotes the direct matrix sum (Searle, 1982). Let
"E = {#Ei j} be the matrix of residual covariances between traits. For t traits, there are a total of W = 2t − 1
possible combinations of traits recorded (assuming single records per trait), e.g. W = 3 for t = 2. For animal i with
combination of traits w, Ri is equal to "Ew, the submatrix of "E obtained by deleting rows and columns pertaining
to missing records.

Average information REML

Assuming a multivariate normal distribution, i.e. y ∼ N(Xb,V), the log of the REML likelihood (L) is (e.g.
Harville 1977)

logL =−1
2

�
const+ log |V|+ log |X∗�V−1X∗|+y�Py

�
(3)

where X∗ denotes a full-rank submatrix of X, and P= V−1−V−1X∗(X∗�V−1X∗)−1X∗�V−1.
Let % denote the vector of parameters to be estimated with elements %i for i = 1, . . . , p. Derivatives of log L are
then (Harville, 1977)

& logL
&%i

= tr
�
&V
&%i
P
�
−y�P&V

&%i
Py (4)

and

&2 logL
&%i&% j

=−1
2

�
tr(P &2V

&%i&% j
)− tr(P&V

&%i
P &V
&% j

)−y�P(
&2V

&%i&% j
−2&V

&%i
P &V
&% j

)Py
�

(5)

The latter is commonly called the observed information. It has expectation

E
�
&2 logL
&%i&% j

�
=−1

2
tr

�
P&V
&%i
P &V
&% j

�
(6)

For V linear in %, &2V/&%i&% j = 0, and the average of observed (5) and expected (6) information is (Johnson and
Thompson, 1995)

1
2

�
&2 logL
&%i&% j

+E
�
&2 logL
&%i&% j

��
=−1

2
y�P&V

&%i
P &V
&% j
Py (7)

The right hand side of (7) is (except for a scale factor) equal to the second derivative of y�Py with respect to %i and
% j, i.e. the average information is equal to the data part of the observed information.
REML estimates of % can then be obtained by substituting the average information matrix for the Hessian matrix
in a suitable optimisation scheme which uses information from second derivatives of the function to be maximised;
see Meyer and Smith (1996) for a detailed discussion of Newton-Raphson type algorithms in this context.

Calculation of the log likelihood

Calculation of log L pertaining to (1) has been described in detail by Meyer (1991). It relies on rewriting (3) as
(Graser et al. 1987; Meyer 1989)

logL =−1
2

�
const+ log |R|+ log |G|+ log |C|+y�Py

�
(8)
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where C is the coefficient matrix in the mixed model equations (MME) for (1) (or a full rank submatrix thereof).
The first two components of log L can usually be evaluated indirectly, requiring only the log determinants of
matrices of size equal to the maximum number of records or effects fitted per animal. For u= a,

log |G| = NA log |"A|+ t log |A| (9)

where NA denotes the number of animals in the analysis (including parents without records). log |A| is a constant
and can be omitted for the purpose of maximising log L . Similarly with Nw denoting the number of animals having
records for combination of traits w

log |R| =
W

$
w=1

Nw log |"Ew| (10)

The other two terms in (8), log |C| and y�Py, can be determined in a general way for all models of form (1). LetM
(of sizeM×M) denote the mixed model matrix (MMM), i.e. the coefficient matrix in the MME augmented by the
vector of right hand sides (r) and a quadratic in the data vector.

M=




X�R−1X X�R−1Z X�R−1y
Z�R−1X Z�R−1Z+G−1 Z�R−1y
y�R−1X y�R−1Z y�R−1y



 =
�
C r
r� y�R−1y

�
(11)

A Cholesky decomposition of M gives M = LL�, with L a lower triangular matrix with elements li j (li j = 0 for
j > i), and

log |C| = 2
M−1

$
k=1

log lkk (12)

y�Py = l2MM (13)

Factorisation of M for large scale animal model analyses is computationally feasible through the use of sparse
matrix techniques; see, for instance, George and Liu (1981).

Calculation of first derivatives

Differentiating (8) gives partial first derivatives

& logL
&%i

=−1
2

�
& log |R|

&%i
+

& log |G|
&%i

+
& log |C|

&%i
+

&y�Py
&%i

�
(14)

Analogously to the calculation of log L the first two terms in (14) can usually be determined indirectly while the
other two terms can be evaluated extending the Cholesky factorisation of the MMM (Meyer and Smith, 1996).

Let D%i
A = &"A/&%i be a matrix whose elements are 1 if %i is equal to the kl−th element of "A and zero otherwise.

Further, let 'kl denote Kronecker’s Delta, i.e., 'kl = 1 for k = l and zero otherwise, and #klA denotes the kl-th
element of "A−1. For %i = #Akl

& log |G|
&#Akl

= NA tr("A−1D
#Akl
A ) = NA(2−'kl)#klA (15)

Similarly, with D%i
w = &"Ew/&%i and #klEw the kl-th element of "E

−1
w ,

& log |R|
&#Ekl

=
W

$
w=1

Nwtr("E−1w D
#Ekl
w ) =

W

$
w=1

Nw(2−'kl)#klEw (16)

while all other first derivatives of log |G| and log |R| are zero.
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Smith (1995) describes a procedure for automatic differentiation of the Cholesky decomposition. In essence, it is an
extension of the Cholesky factorisation which gives not only the Cholesky factor of a matrix but also its derivatives,
provided the corresponding derivatives of the original matrix can be specified. In particular, Smith (1995) outlines
a ‘backwards differentiation’ scheme which is applicable when we want to evaluate a scalar function of L, f (L).
It involves computation of a lower triangular matrix F. This is initialised to

�
& f (L)/&li j

�
. On completion of the

backwards differentiation, F contains the derivatives of f (L) with respect to the elements of M. Smith (1995)
states that the calculation of F (not including the work needed to compute L) requires about twice as much work
as one likelihood evaluation. Once F has been determined first derivatives of f (L) can be obtained one at a time
as tr(F&M/&%i), i.e., only one matrix F is required.
Meyer and Smith (1996) describe a REML algorithm utilising this technique to determine first and (observed)
second derivatives of log L for the case considered here. For f (L) = log |C| + y�Py, the scalar is a function of
the diagonal elements of L (see (12) and (13)). Hence,

�
& f (L)/&li j

�
is a diagonal matrix with elements 2l−1ii for

i= 1, . . . ,M−1 and 2lMM in row M.
The non-zero derivatives ofM have the same structure as the corresponding part (data vs. pedigree) part ofM.

&M
&#Akl

=




0 0 0
0 −"A−1D%i

A "A
−1⊗A−1 0

0 0 0



 (17)

&M
&#Ekl

=




X�( &R−1/&#Ekl )X X�( &R−1/&#Ekl )Z X�( &R−1/&#Ekl )y
Z�( &R−1/&#Ekl )X Z�( &R−1/&#Ekl )Z Z�( &R−1/&#Ekl )y
y�( &R−1/&#Ekl )X y�( &R−1/&#Ekl )Z y�( &R−1/&#Ekl )y



 (18)

As outlined above,R is blockdiagonal for animals. Hence, matrices &R−1/&#Ekl have submatrices−"E−1w D
%i
w"E−1w ,

i.e., derivatives ofM with respect to residual (co)variances can be set up in the same way as the ‘data part’ ofM.
The strategy outlined for the calculation of first derivatives of log L does not require the inverse of the coefficient
matrix C. In contrast, Johnson and Thompson (1994 and 1995) and Gilmour et al. (1995) for the univariate case,
and Madsen et al. (1994) and Jensen et al. (1995) for the multivariate case derive expressions for & logL/&%i based
on (4), which require selected elements of C−1. Their scheme is computationally feasible due to the sparse matrix
inversion method of Takahashi et al. (1973). Misztal (1994) claimed that each sparse matrix inversion took about
two to three times as long as one likelihood evaluation, i.e. computational requirements for both alternatives to
calculate first derivatives of log L appear comparable.

Calculation of the average information

Define

bi =
&V
&%i
Py (19)

For %i = #Akl , &V/&%i = Z(D%i
A ⊗A)Z�. This gives

bi = Z(D%i
A "

−1
A ⊗ INA)â= (2−'kl)

t

$
m=1

(#kmA Zl +#lmA Zk)âm (20)

where In is an identity matrix of size n, Zm the the submatrix of Z and am the subvector of a for trait m, i.e. bi
is simply a weighted sum of solutions for animals in the data. For %i = #Ekl and ê = y−Xb̂−Zû the vector of
residuals for (1) with subvectors êm for m= 1, . . . , t,

bi = (
N

$
k=1

+ D%i
wk"E

−1
wk )ê= (2−'kl)

t

$
m=1

(#kmE +#lmE )êm (21)

Extension to models fitting additional random effects such as litter effects or maternal genetic effects is straight-
forward; see, for instance, Jensen et al. (1995) for corresponding expressions.
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Using (19), (6) can be rewritten as

y�P&V
&%i
P &V
&% j
Py= b�iPb j (22)

Johnson and Thompson (1995) calculated vectors Pb j as the residuals from repeatedly solving the mixed model
equations pertaining to (1) with y replaced by b j for j= 1, . . . , p. On completion, (22) could be evaluated as simple
vector products. Alternatively, define a matrix B= [b1 | b2 | · · · | bp]. Then consider the mixed model matrix with
y replaced by B, i.e., with the last row and column (for right hand sides) expanded to p rows and columns.

MB =



 C X�R−1B
Z�R−1B

B�R−1X B�R−1Z B�R−1B



 (23)

FactoringMB or, equivalently, ‘absorbing’ C into the last p rows and columns ofMB then overwrites B�R−1B with
B�PB which has elements {b�iPb j} (Smith, 1994; pers. comm.). With the Cholesky factorisation of C already
determined (to calculate log L), this is computationally undemanding.

EQUAL DESIGN MATRICES

For a simple animal model with all traits recorded at the same or corresponding times, design matrices are equal,
i.e., (1) can be rewritten as

y= (It ⊗X0)!+(It ⊗Z0)a+ e (24)

Meyer (1985) described a Method of Scoring algorithm for this case, exploiting a canonical transformation to
reduce a t-variate analysis to t corresponding univariate analyses.
For "E positive definite and "A positive semi-definite, there exists a matrix Q such that ( is a diagonal matrix with
elements )ii ≥ 0 which are the eigenvalues of "E−1"A, and * = It (e.g., Graybill, 1969).

( = Q"AQ� (25)
* = Q"EQ� (26)

Transforming the data to

y∗ = (Q⊗ IN)y (27)

then yields t new, ‘canonical’ traits which are uncorrelated and have unit residual variance. This makes the corre-
sponding coefficient matrix in the MME blockdiagonal for traits, i.e.,

C∗ =
t

$
i=1

+C∗i with C∗i =
�
X�0X0 X�0Z0
Z�0X0 Z�0Z0+)−1ii A−1

�
(28)

Meyer (1991) described how the log likelihood (on the original scale) in this case can be computed trait by trait
as the sum of univariate likelihoods on the canonical scale plus an adjustment for the transformation (last term in
(29)).

logL = −1
2

�
NA

t

$
i=1

log)ii+
t

$
i=1

log |C∗i |+
t

$
i=1
y∗�i P∗i y∗i + t log |A|

+(N− r(X0)) log |"E |
�

(29)

6



with y∗i the subvector of y∗ for trait i and P∗i the i-th diagonal block of the projection matrix on the canonical scale
P∗ which, like C∗, is blockdiagonal for traits.
Terms required in (29) can be calculated by setting up and factoring, as described above, univariate MMM (on the
canonical scale),M∗

i , of size M0 = (M−1)/t+1 each

M∗
i =

�
C∗i r∗i
r∗�i y∗�i y∗i

�
= L∗i L∗

�
i =

� L∗Ci 0
l∗�i l∗MMi

��
L∗�Ci l∗i
0 l∗MMi

�
(30)

with r∗i = (X�0y∗i | Z�0y∗i )
�.

Moreover, all first derivatives of log L as well the average information matrix, both on the canonical scale, can be
determined trait by trait.

First derivatives on the canonical scale

Consider the parameterisation of Meyer (1985) where %∗, the vector of parameters on the canonical scale, has
elements )i j and +i j for i≤ j = 1, . . . , t, i.e. parameters are the (co)variances on the canonical scale.
The log likelihood on the canonical scale can be accumulated trait by trait, because Cholesky decompositions
of individual MMM, M∗

i , yield the submatrices and -vectors for trait i which are obtained when decomposing
M∗ = L∗L∗� , i.e.,

L∗ =
�
L∗C
l∗� l∗MM

�
=





L∗C1
0 L∗C2
...

. . .
0 0 · · · L∗Ct
l∗�1 l∗�2 · · · l∗�t l∗MM




(31)

On the original scale, L and F have the same sparsity structure (Smith, 1995). However, while )i j = +i j = 0 for
given "A and "E , the corresponding derivatives and estimates are not, unless the maximum of the likelihood has
been attained. Hence, while the off-diagonal blocks of L∗C are zero, the corresponding blocks of F∗ = & f (L∗)/&M∗

are not.
It can be shown that both the diagonal blocks of F∗ corresponding to L∗Ci , F

∗
Cii , and the row vectors corresponding

to l∗�i , f∗
�
i , are identical to those obtained by backwards differentiation of L∗i . In other words, first derivatives with

respect to the variance components on the canonical scale ()ii and +ii) can be obtained trait by trait from univariate
analyses. Calculation of derivatives with respect to )i j and +i j, however, requires the off-diagonal blocks of F∗
corresponding to traits i and j, F∗Ci j . Fortunately, as outlined in the Appendix, matrices F

∗
Ci j can be determined

indirectly from terms arising using the Cholesky decomposition and backwards differentiation for individual traits
on the canonical scale.
From (17) and (18), first derivatives of f (L∗) = log |C∗|+y∗�P∗y∗ are then

& f (L∗)
&)i j

= −)−1ii )−1j j tr
��

0 0
0 A−1

�
F∗Ci j

�
(32)

& f (L∗)
&+i j

= −
�
tr

��
X�0X0 X�0Z0
Z�0X0 Z�0Z0

�
F∗Ci j

�
+

1
1+'i j

�
f∗�i r∗j + f∗

�
j r∗i +2F∗MMy∗

�
i y∗j

��

(33)

with F∗MM theM−th diagonal element of F∗. For f (L∗) = log |C∗|+y∗�P∗y∗, F∗MM = 1.
Other terms required to determine the first derivatives on the canonical scale are

& log |G∗|
&%∗i

=
�

NA)−1kk for %∗i = )kk
0 otherwise (34)

& log |R∗|
&%∗i

=
�

N for %∗i = +kk
0 otherwise (35)
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where G∗ and R∗ are the canonical scale equivalents to G and R, respectively.

Average information on the canonical scale

For G∗ = (⊗A, R∗ = ItN , and thus V∗ =Var(y∗) blockdiagonal for traits, (20) and (21) simplify to

b∗i =
&V∗
&)kl

P∗y∗ = (Dkl⊗ IN)
�
)−1j Z0â

∗
j

�
(36)

and

b∗i =
&V∗
&+kl

P∗y∗ = (Dkl⊗ IN)
�
ê∗j

�
(37)

i.e., vectors b∗i are zero except for subvectors for traits k and l, b∗ik = sl and b∗il = sk, with s j standing in turn for
)−1j j Z0â∗j and ê∗j .
With P∗ blockdiagonal for traits, %∗i = )kl or +kl (k ≤ l) and %∗j = )mn or +mn (m≤ n), this gives

b∗�i P∗b∗j =






0 for k �= m, l �= n
b∗�ikP∗mb∗jm+b∗�il P∗nb∗jn = s�lP∗msn+ s�kP∗nsm for k = m �= l = n
b∗�ikP∗mb∗jm = s�lP∗msn otherwise

(38)

Hence, calculation of the average information on the canonical scale requires all terms s�iP∗ks j for i≤ j = 1, . . . ,2t
and k= 1, t. These can be obtained trait by trait, analogously to the procedure described above for the general case.
After the Cholesky factorisation ofM∗

k has been carried out, solution a∗k for animals’ additive genetic effects and
residuals e∗k for trait k are obtained, storing the Cholesky factor L∗k . Define a matrix S of size N×2t with columns
equal to vectors si. S is the canonical scale equivalent to B above. Once all columns of S have been evaluated, set
up a matrix

M∗
Sk =



 C∗k
X�0S
Z�0S

S�X0 S�Z0 S�S



 (39)

for each trait. This is the MMM for trait k on the canonical scale with y∗k replaced by S. The matrix S’S has elements
s�is j which are the sum of squares and crossproducts off the vectors of (weighted) solutions and residuals. Absorb-
ing C∗k into S�S (using the stored matrix L∗k) then overwrites this matrix with S�P∗kS which has elements s�iP∗ks j.
After all t traits have been processed b∗�i P∗b∗j , (twice) the average information, can be ‘assembled’ according to
(38).

Derivatives on the original scale

Let H∗, with elements 12b
∗�
i P∗b∗j , and g∗, with elements & logL∗/&%∗i , denote the average information matrix and

vector of gradients on the canonical scale, respectively. Corresponding terms on the original scale are then

H = JH∗J� (40)
g = Jg∗ (41)

where J with elements &%∗i /&% j is the Jacobian matrix of % with respect to %∗. From (25) and (26), J has non-zero
elements

&)i j
&#Amn

=
1

1+'mn
(qimq jn+qinq jm) (42)

&+i j
&#Emn

=
1

1+'mn
(qimq jn+qinq jm) (43)

A numerical example illustrating calculations is given in the Appendix.
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Alternative parameterisation

The above parameterisation requires switching between the original and canonical scale (or accumulating the
transformations). Alternatively, as done by Meyer (1991) for a derivative-free algorithm, %∗ can be defined to have
t elements )ii (i = 1, . . . , t) and t2 elements qi j (i, j = 1, . . . , t), i.e. the ‘genetic’ variances on the canonical scale
and the elements of the transformation matrix Q. This allows estimation to be carried out on the canonical scale.
Moreover, as outlined by Meyer (1991) for a derivative-free algorithm, evaluation of log L for given )ii requires
scalar calculations involving the elements of Q only, i.e. maximising the conditional log L (for given )ii) with
respect to qi j is computationally inexpensive. This allowed the maximum of log L to be located in a two-step
procedure with computational requirements equivalent to those of a t parameter (rather than t(t+1) ) analysis.
While derivatives with respect to qi j (not shown) require the off-diagonal blocks of F, derivatives with respect to )ii
do not (see (32)). Hence a nested maximisation, using an average information step to estimate parameters )ii and
a derivative-free procedure to maximize L with respect to qi j for given )ii appears computationally advantageous
in this case.

REDUCED RANK COVARIANCE MATRICES

Forcing the estimate of the genetic covariance matrix "̂A to have reduced rank (kA < t), results in a number of zero
eigenvalues on the canonical scale. In this case, several terms contributing to log L or its derivatives are constant or
depend on the canonical transformation (Q) only. Thus they need to be evaluated only once per analysis, effectively
reducing the computational requirements per round of iteration to those for univariate analyses for the kA non-zero
eigenvalues.

Likelihood For )ii→ 0, contributions to log L (29) become

NA log)ii+ log |C∗i |→ log
��X�0X0

��+ log
��A−1

�� (44)

and

y∗�i P∗i y∗i →
t

$
m=1

t

$
n=1

qimq jny�m
�
I−X0(X�0X0)−X�0

�
yn (45)

While the former is a constant, determined by the data structure only, the latter depends on the canonical transfor-
mation. However, as (45) shows, it can be calculated for any Q from the corresponding residual sums of squares
(SS) and crossproducts (CP) on the original scale. Let Y denote a matrix of size N × t with columns equal to
vectors of observations yi. Both log

��X�0X0
�� and quadratics y�m (I−X0(X�0X0)−X�0)yn can then be determined by

factoring the matrix

MX =
�
X�0X0 X�0Y
Y�X0 Y�Y

�
(46)

First derivatives To estimate genetic and residual covariance components, only the derivatives on the canonical
scale (with respect to )i j or +i j) are required for which the eigenvalues for both canonical traits ()ii and ) j j) are
non-zero. This reduces the number of Cholesky decompositions (of matrices M∗

i ) and corresponding backwards
differentiations (to obtain matrices F∗Cii and vectors f

∗
i ) to be carried out to the number of non-zero eigenvalues, kA.

Moreover, only kA(kA−1)/2 instead of t(t−1)/2 off-diagonal blocks F∗Ci j need to be evaluated. This can reduce
computational requirements per round of iteration dramatically.

Average information As shown above, the average information matrix can be constructed from residual SS and
CP in the vectors of random effects solutions and residuals. For )kk = 0, â∗k = 0. Residuals on the canonical scale
are then a linear combination of residuals on the original scale, ê∗k = $t

m=1 qkmêm with êm = ym−X0!̂m. Again the
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latter need to be evaluated only once. Terms required for the AI can then be obtained as before, replacingM∗
Sk in

(39) with
�
X�0X0 X�0S
S�X0 S�S

�
(47)

if )kk = 0. For multiple eigenvalues equal to zero, (47) only needs to be evaluated once (per iterate).

COVARIANCE FUNCTIONS

The ‘infinitely-dimensional’ model

Consider ‘repeated’ measurements taken at a number of ages (or equivalent), with potentially infinitely many
records. The covariance between records taken at ages l and m can be expressed as

F (al ,am) =
k−1

$
i=0

k−1

$
j=0

,i(al), j(am)Ki j (48)

where F is the covariance function and K with elements Ki j is the pertaining matrix of coefficients, and am is
the m−th age, standardised to the interval for which the polynomials are defined. - is a matrix of orthogonal
polynomial functions evaluated at the given ages with elements ,i j = , j(ai), the j−th polynomial evaluated for
age i, and k denotes the order of polynomial fit. Conceptually k=., but in practice k≤ t for observations at t ages.
Kirkpatrick et al. (1990 and 1994) suggested the use of the so-called Legendre polynomials (see Abramowitz and
Stegun, 1965) which span the interval from −1 to 1.
Note that polynomials include a scalar term, i.e. for t records a full order fit involves terms to the power 0, . . . , t−1.
From (48), a covariance matrix can be rewritten as

" = -K-� (49)

For a reduced order fit, k < t, - is rectangular with k columns and only k(k+ 1)/2 coefficients Ki j need to be
estimated.
Let "A = -AKA-�A for an order of fit kA, and KA the matrix of coefficients for the corresponding covariance func-
tion A . Further, partition the error covariance matrix into components due to permanent and temporary environ-
mental effects, "E ="R+"/. Under the ‘finite model’, these usually cannot be disentangled unless there are repeat-
ed records for the same age. Assume the latter represent independent ‘measurement errors’, i.e. "/ = Diag

�
#2/i

�
,

and that the former can be described by a CF, R , i.e. "R = -RKR-�R with order of fit kR. Fitting measurement
errors separately together with R to the order t−1 yields an equivalent model to a full order fit for "E . Hence the
maximum for kR is t−1 rather than t.

General case

Estimates of the elements of the coefficient matrices of the covariance functions (and the measurement errors) can
be estimated by REML using algorithms for the multivariate estimation of covariance components together with a
simple reparameterisation.

Likelihood As outlined by Meyer and Hill (1997), log L (9) can be rewritten as

logL = −1
2

[const+ log |C|+y�Py+ t(log |A|+ log |D|)

+NA(log |KA|+ log
��-A-�A

��)+N log
��-RKR-�R+Diag

�
#2/i

��� �
(50)

Under the CF model, the vector of parameters to be estimated is 0 with elements KAi j for i≤ j = 1, . . .kA, KRi j for
i ≤ j = 1, . . .kR and #2/i for i = 1, . . . , t. For r CFs to be estimated, it has minimum length r+ t (fitting all CFs to
order 1 and assuming all #2/i to be distinct) and maximum length rt(t+1)/2 (fitting all CFs to full order).
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Derivatives Note that the elements of matrices - only depend on the ages at which records were taken and
the polynomial function chosen. For any vector 0 a corresponding vector of covariance components (%) can be
calculated using (49). First and ‘average’ second derivatives of log L can thus be determined with respect to the
elements of % as described above (section on estimation of covariance components in the general cases) and then
be transformed to the ‘covariance function scale’, using

& logL
&0

= J& logL
&%

(51)

&2y�Py
&0&0�

= J&
2y�Py
&%&%�

J� (52)

where J with elements &%i/&0 j is the Jacobian matrix of % with respect to 0. From (48), non-zero elements of J
are

Ji j =
1

1+'rs
(,mr,ns+,ms,nr) (53)

for 0i = KAmn and % j = #Ars , or 0i = KRmn and % j = #Ers , and

Ji j = 1 (54)

for 0i = #2/m and % j = #Emm .
Note that a reduced order fit for A (kA < t) implies a genetic covariance matrix "A of reduced rank. This may lead
to computational problems when applying ‘standard’ methodology to factor the MMM (such as the Cholesky de-
composition and its automatic differentiation) as described above. For practical applications, this can be overcome
by setting the t− kA zero eigenvalues to an operational zero, i.e. a small non-zero value such as 10−5 or 10−6.
As for the estimation of covariance components, extensions to other models including additional random effects
are straightforward.

Equal design matrices

Assuming measurement errors are greater than zero, "E = "R +"/ is positive definite, regardless of the order of
fit for R . Hence, the transformation to canonical scale exists and the log likelihood can be determined as for the
‘finite model’, summing terms from univariate analyses on the canonical scale as described above.
For the estimation of covariance components, the canonical transformation doubled as a tool to reduce compu-
tational requirements (allowing calculations to be carried out for one trait at a time) and as a reparameterisation,
i.e. the likelihood was maximised with respect to the eigenvalues and elements of eigenvectors of the canonical
decomposition of "A and "E . For the CF model there are 3 matrices to be considered, KA and KR, or "A and
"R derived from them, and "/. Decompositions diagonalising several matrices exist. Lin and Smith (1990), for
instance, used the common principal components algorithm of Flury and Constantine (1985) as an equivalent to
the canonical decomposition for a multivariate mixed model with several random effects. However, this required
the matrices to be transformed to be positive definite, and is thus not suitable for this application.
Hence only the first parameterisation described above, namely %∗ having elements )i j and +i j for i≤ j= 1, . . . , t is
suitable for the estimation of CFs. First derivatives and and average information on the canonical scale can then be
determined and transformed back to the original scale as described above. The Jacobian J in this case has non-zero
elements

&)i j
&KAmn

=
1

1+'mn
(1im1 jn+1in1 jm) (55)

&+i j
&KRmn

=
1

1+'mn
(1im1 jn+1in1 jm) (56)

&+i j
&#/2m

= qimq jm (57)

where 1mn are the elements of 2 =Q3.
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DISCUSSION

A strategy has been outlined for computing the log likelihood in a multivariate mixed model, together with its first
and ‘average’ second derivatives with respect to covariance components or the coefficients of covariance functions.
These can be used a (modified) Newton-type estimation procedure,

%t+1 = %t − (Ht +4tI)−1gt (58)

(Marquard, 1963), together with an additional transformation to ensure estimates to be within the parameter space;
see Meyer and Smith (1996) for details.
For a model with only one random factor and equal design matrices for all traits, calculations can be carried out
trait by trait, reducing computational requirements to those of a series of univariate analyses. This is feasible
through a canonical decomposition of the genetic and residual covariance matrices and a corresponding, linear
transformation of the data to new, uncorrelated variables.
In that case, fitting a covariance function to less than full order or forcing estimated genetic covariance matrices
to be of reduced rank is equivalent to fixing eigenvalues on the canonical scale at zero. Most terms pertaining
to zero eigenvalues then only need to be calculated once per analysis, resulting in considerable reductions of
computational requirements. In essence, it reduces work required in each round of an iterative solution scheme
to that equivalent to kA univariate analyses. This is particularly useful for a comparatively large number of highly
correlated measurements where a covariance function of low order suffices to describe the data adequately. In
contrast, for analyses where a transformation to canonical scale is not feasible, the complete t-variate MMM needs
to be set up, factored and differentiated in each round of iteration, even if CFs are only fitted to order kA.
Making computational demands proportional to the order of fit for the genetic CF (or matrix) encourages an
‘upwards’ strategy : increasing the order of fit one by one allows a likelihood ratio test to be performed at each
step. The minimum number of parameters describing the data is found when the likelihood ceases to increase
significantly when the order of fit is increased. It is envisioned that estimation of reduced order covariance matrices
or functions will become the standard procedure for high-dimensional multivariate analyses.
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Appendix

Calculation of off-diagonal blocks of F

Smith (1995) gives pseudo-code for backwards differentiation of the Cholesky factor of a symmetric matrix. This
can be adapted to calculating a selected submatrix only for the case where the corresponding part of the Cholesky
factor has zero elements.
Calculating the off-diagonal block of F∗ for traits i and j, F∗Ci j indirectly, requires components from univariate
analyses on the canonical scale, namely L∗Ci with elements L

i
kl and l¯

∗
i with elements lik, the parts of the Cholesky

factor of M∗
i corresponding to the coefficient matrix and vector of right hand sides, respectively, and f∗j with

elements f jk , the ‘F matrix’ analogue to the vector of right hand sides for trait j. F∗Ci j with elements Fkl can then be
calculated as follows :

1. Initialise F∗Ci j to f
∗
j l∗

�
i , i.e. for k, l = 1, . . . ,M0−1, Fkl := f jk l

i
m

2. Calculate columns of F∗Ci j one at a time, starting with the last column, i.e. for k =M0−1, . . . ,1

(a) Adjust for columns already evaluated, i.e. for m = M0− 1, . . . ,k+ 1 and l = 1,M0− 1, Flk := Flk +
FlmLimk

(b) Divide by the pivot, i.e. for l = 1,M0−1, Flk :=−Flk/Likk

where ‘:=’ indicates that the left hand side of the equation is overwritten with the quantity on the right.
As noted by Smith (1995), only selected elements of F (in the general case) need to be evaluated - adjustments
only occurring for non-zero elements of the Cholesky factor. Hence F has the same sparsity structure as L. Similar
considerations hold in this case, reducing computational requirements in practical applications substantially. For
instance, columns of F∗Ci j are not required for adjustments to other columns if the corresponding row of L

∗
i has

no non-zero off-diagonal elements. Hence in these columns only elements corresponding to potentially non-zero
elements in the derivatives of M∗ need to be evaluated. Other redundancies could be perceived. For a particular
analysis it might be worth carrying out a symbolic factorisation of the MMM for all traits on the original scale to
determine the sparsity structure of the ‘full L’ and thus the minimum number of elements of F∗Ci j which need to be
evaluated. This would have to be carried out only once per analyses prior to the iterative estimation scheme.

Numerical Example

Consider the example given by Meyer (1991), consisting of two traits measured on 284 mice. Table 1 summarises
starting values, intermediate results for the first iterate and estimates over rounds of iterations. Convergence is
reached rapidly even though starting values for covariances were far from the eventual estimates, the AI algorithm
performing similar to an algorithm using observed or expected second derivatives of log L (see Meyer and Smith,
1996).
For the starting values given the canonical transformation is

Q=
�

0.70840 −0.07868
−0.23025 0.31833

�

with eigenvalues )11 = 1.96406 and )22 = 0.50389. Quadratics on the canonical scale (y∗�i P∗i y∗i ) are 314.77078
and 375.36955 for the two traits and the corresponding log |C∗i | are 241.85744 and 554.08056, respectively. With
329 animals in the an analysis and r(X0) = 2, this gives log L omitting the term t log |A|, of −1172.3761 (c.f.
(29)).
First derivatives of log |G∗| and log |R∗| calculated according to (34) and (35) are given in Table 1. Terms y∗�i y∗j
( i ≤ j = 1,2) and f∗�i r∗j ( i, j = 1,2) are 42285.252, 50449.049 and 64091.809, and −83940.962, −101237.320,
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Table 1 : First derivatives of the log likelihood (L) and average information together with estimates over rounds
of iteration for numerical example.

Parameter log L
i= 1 2 3 4 5 6
Starting values
%i 4.7000 4.0000 8.3000 2.5000 3.0000 12.9000 -1172.3761
%∗i 1.9641 0 0.5039 1 0 1
First derivatives
& log |G∗|/&%∗i 167.51 0 652.92 0 0 0
& log |R∗|/&%∗i 0 0 0 284 0 284
& f (L∗)/&%∗i -178.270 101.222 -719.163 -303.636 140.415 -351.989
& logL/&%∗i 5.3802 -50.6111 33.1228 9.8182 -70.2077 33.9945
& logL/&%i 12.7110 -17.7853 4.6575 18.1806 -23.1819 5.2641
Average informationa

-11.9738 8.7052 0.0000 -17.3585 8.2079 0.0000
-56.4919 21.2427 8.2079 -62.6270 14.6015

-6.5215 -75.0270 0.0000 14.6015 -58.8969
5.5025 -7.1041 -43.0093 18.9830 0.0000
-1.1686 2.1074 -0.9169 -134.6006 27.7462
-7.7992 5.6077 -0.9984 -18.3064 -109.2794
5.6077 -6.6871 1.7184 12.2914 -13.8844
-0.9984 1.7184 -0.7214 -2.0238 3.3428 -1.3550

Estimates over rounds of iteration
1 4.0476 2.5948 5.8965 3.0589 0.6548 15.0535 -1148.2602
2 4.2164 1.8607 8.1262 2.9166 0.9662 14.0864 -1144.3823
3 5.0011 0.0370 8.1894 2.6981 2.0881 13.0165 -1142.5610
4 4.4354 0.1713 7.8996 2.6046 2.0547 13.1032 -1142.0188
5 4.3643 0.1484 7.9252 2.6225 2.0691 13.0839 -1142.0164
6 4.3764 0.1495 7.9148 2.6158 2.0688 13.0897 -1142.0163

aUpper triangle : canonical scale, lower triangle : variance component scale

−101089.518 and−127432.879, respectively. Application of (32) and (33) then gives the first derivatives (canoni-
cal scale) of f (L∗), with corresponding derivatives & logL/&%∗i =−1/2(& log |G∗|/&%∗i +& log |R∗|/&%∗i +& f (L∗)/&%∗i )
as shown in Table 1. From (42) and (43), the Jacobian is

J=





0.50182 −0.16311 0.05301 0 0 0
−0.11147 0.24362 −0.14659 0 0 0
0.00619 −0.02505 0.10134 0 0 0

0 0 0 0.50182 −0.16311 0.05301
0 0 0 −0.11147 0.24362 −0.14659
0 0 0 0.00619 −0.02505 0.10134





and (41) yields derivatives on the original scale as shown (Table 1). The average information on the canonical
scale (upper triangle in Table 1) is calculated according to (35) to (38), and (40) gives the corresponding values on
the original scale.
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