Interpreting the Standard Deviation

- Given two samples from a
population, the sample with the
larger standard deviation (SD) is the more variable
- Say we have $s_{x}=21.4 ; s_{y}=29.6$
- We are using the SD as a relative or comparative measure- Y is ...?
- How does the SD provide a measure of variability for a single sample or, what does 29.6 really mean?

The Empirical Rule

A rule of thumb that applies to data sets that have a mound shaped, symmetric distribution

- Approximately 68% of the measurements will fall within 1 SD of the mean
-Approximately 95\% of the measurements will fall within 2 SDs of the mean
- Approximately 99.7% of the measurements will fall within 3 SDs of the mean
(1)

Application of Empirical Rule for Mound-Shaped Distributions of Data (continued)

$$
\begin{aligned}
& (\mu-\sigma, \mu+\sigma)=(350-25,350+25)=(325,375) \\
& (\mu-2 \sigma, \mu+2 \sigma)=(350-50,350+50)=(300,400)
\end{aligned}
$$

$$
(\mu-3 \sigma, \mu+3 \sigma)=(350-75,350+75)=(275,425)
$$

Relationships Between
 Quantitative Variables

- Scatterplot, a two-dimensional graph of data values
- Use a scatterplot to look at the relationship between two quantitative variables
- Plot has one variable's values along the vertical axis and the other variable's values along the horizontal axis
- Correlation, a statistic that measures the strength and direction of a linear relationship
- Regression equation, an equation that describes the average relationship between a response and explanatory variable---we will not get to this
- What is the average pattern? Does it look like a straight line or is it curved?
- What is the direction of the pattern?
- How much do individual points vary from the average pattern?
- Are there any unusual data points?

Use different plotting symbols or colors to represent different subgroups.

For the handspan/height data

- Taller people tend to have
greater handspan measurements than shorter people do (positive association)
- The handspan and height measurements
may have a linear relationship ion when the values of one variable tend to decrease as the values of the other variable increase.

Outliers

Outlier--- an unusually large or small measurement relative to the other observations

Common causes:

- Measurement incorrectly observed or recorded (including data entry)
- Measurement comes from a different population
- Measurement is correct, but represents a rare event

Body weights and the time it takes to chug a 12 -ounce beverage for $\mathrm{n}=13$ college students. The data were submitted by a student for a class project. (Source: William Harkness, Pennsylvania State University)
 ${ }^{14}$

Methods for Detecting Outliers 1.5 IQR Rule and Box plots

- Based on quartiles of a data set
- Quartiles partition the data set into 4 groups, each containing 25% of the measurements
- The lower quartile, Q_{1}, is the $25^{\text {th }}$ percentile; the middle quartile, M, is the median ($50^{\text {th }}$ percentile); the upper quartile, Q_{3}, is the $75^{\text {th }}$ percentile

Methods for Detecting Outliers
Example: sample of 5000 data
values from the normal population
with $\mu=350 ; \sigma=25$
R summary output
Min. :257.0
1st Qu. : 333.3
Median: 350.0
Mean: 349.8
3rd Qu.: 366.0
Max.: 439.9

Methods for Detecting Outliers

Interquartile Range (IQR)--distance between the upper and lower quartiles

$$
I Q R=Q_{3}-Q_{1}
$$

Lower fence $=Q_{1}-(1.5 \times \mathrm{IQR})$
Upper fence $=Q_{3}+(1.5 \times \mathrm{IQR})$

