

Correlation—jump ahead to Chapter 10-2

Correlation is a measure of the linear association between two variables, *x* and *y*.

Pearson product moment coefficient of

correlation, r, is a measure of the strength of the linear relationship between two variables x and y. It is computed for a <u>sample</u> of n measurements on x and y as:

$$r = \frac{1}{n-1} \sum_{i} \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$

Can also be written as

In Excel use: =Pearson(A1:An,B1:Bn)

- 1. *r* is positive when the slope is positive and likewise negative when the slope is negative
- 2. If $SS_{xy} = 0$, then $r = 0 \rightarrow$ that there is no association between the magnitudes of the two variables; or, a change in the magnitude of one variable does not imply a change in the magnitude of the other variable
- 3. The correlation coefficient, r, is unitless and assumes a value between -1 and +1, regardless of the units of x and y
- 4. The Cor(X,Y) = Cor(Y,X)

For the reported/measured height data, *r* is strongly positive, indicating that reported height tends to increase as measured height increases---*for this sample of 11 individuals*

Interpretations of an observed association

- 1. Correlation does not prove causation, although it is possible that there is causation.
- 2. There may be causation, but confounding factors contribute as well, making this causation difficult to prove.
- 3. There is no causation. The association is explained by how the explanatory and response variables are both affected by other variables.
- 4. The response variable is causing a change in the explanatory variable.

Population Correlation Coefficient

Denoted by ρ (rho)

estimated by the sample statistic, r

Hypothesis test for ρ given on page 527—we will not specifically go over this

_	Reported	Measured	Reported-Measured
	68	66.8	1.2
	74	73.9	0.1
	66.5	66.1	0.4
	69	67.2	1.8
	68	67.9	0.1
	71	69.4	1.6
	70	69.9	0.1
	70	68.6	1.4
	67	67.9	-0.9
	68	67.6	0.4
	70	68.8	1.2
	Correlation	0.923	
	Covariance	4.086	
Mean	69.227	68.555	0.673
SD	2.114	2.094	0.826
Var	4.468	4.387	0.682
SE	0.897		0.249

Let R = reported height; M = measured height Var(R) + Var(M) - 2(Cov(R,M)) = **0.682**

$$\operatorname{cor}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} \Longrightarrow \operatorname{cov}(X,Y) = \operatorname{cor}(X,Y)(\sigma_X \sigma_Y)$$

 $H_0: \mu_R = \mu_M \text{ versus } H_1: \mu_R > \mu_M$ $H_0: \mu_R - \mu_M = 0 \text{ versus } H_1: \mu_R - \mu_M > 0$

t-Test: Two-Sample Assuming Unequal Variances

	Reported	Measured
Mean	69.227	68.555
Variance	4.468	4.387
Observations	11.000	11.000
Hypothesized Mean Difference	0.000	
df	20.000	
t Stat	0.750	
P(T<=t) one-tail	0.231	
t Critical one-tail	1.725	
P(T<=t) two-tail	0.462	
t Critical two-tail	2.086	

$H_0: \mu_d = 0$ versus $H_1: \mu_d > 0$

t-Test: Paired Two Sample for Means

	Reported	Measured
Mean	69.227	68.555
Variance	4.468	4.387
Observations	11.000	11.000
Pearson Correlation	0.923	
Hypothesized Mean Difference	0.000	
df	10.000	
t Stat	2.701	
P(T<=t) one-tail	0.011	
t Critical one-tail	1.812	
P(T<=t) two-tail	0.022	
t Critical two-tail	2.228	

