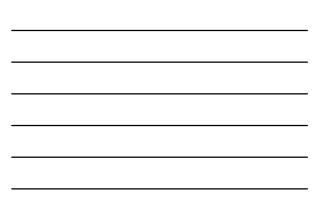
Statistical Errors and Power of a Test

Purpose

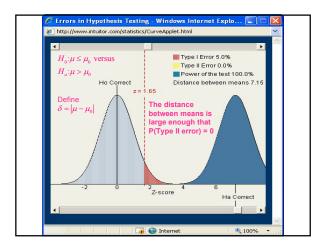
- 1. Review the concept of power of the test
- Determine the required sample size, n, to have a pre-specified power (1-β) for tests concerning the mean at significance level α

Power of a test

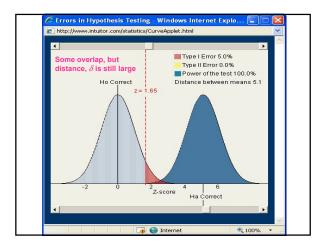
Type I error: Probability of rejecting the null hypothesis, H_{ip} when the null is true. Designated by α .

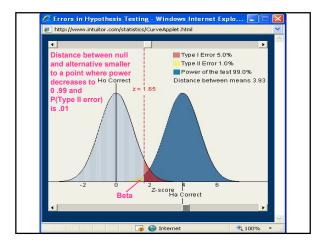

<u>Type II error</u>: Probability of failing to reject the null hypothesis, H_0 , when the alternative, H_1 , is true. Designated as β .

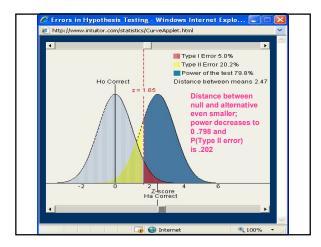
Power: Probability of accepting the alternative hypothesis, H_1 , when the alternative is true. [The probability that the test will correctly lead to the rejection of the null hypothesis *for a particular value of in the alternative hypothesis*]. Designated as $1-\beta$.

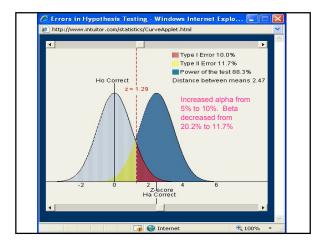

Power of a test				
		Truth about the population		
		H ₀ True	H_1 True	
Decision based on sample data	Reject H ₀	Type I Error	Correct Decision	
	Fail to reject H_0	Correct Decision	Type II Error	

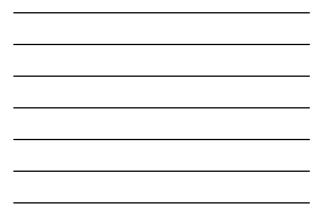
When designing a study we should be interested in both α and $1 - \beta$


See http://www.intuitor.com/statistics/T1T2Errors.html for a conceptual discussion. See applet at http://www.intuitor.com/statistics/CurveApplet.html

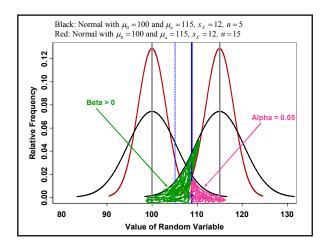




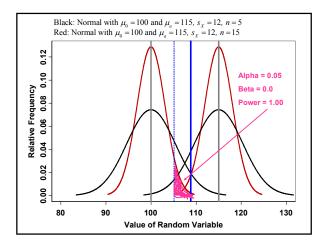




What does power depend on?


Three factors that will increase the power of a test:

- Increase α
- Increase *n*, the sample size
- Increase the δ distance between μ_0 and μ_a



Summary

- As alpha increases, power increases
- As *n* increases, power increases
- As the distance between the null and hypothesized values of the mean increases, power increases

Summary

- For a fixed *n* and alpha, the value of beta decreases and the power increases as the distance between the specified null value and the specified alternative value increases.
- For fixed *n* and values of the null and hypothesized mean, the value of beta increases and the power decreases as the value of alpha is decreased.
- For fixed alpha and values of the null and hypothesized mean, the value of beta decreases and the power increases as the sample size *n* is increased.

See applet at: http://wise.cgu.edu/power/appletover.html

