The Additive Rules and Mutually Exclusive Events

Additive rule of probability—Given events *A* and *B*, the probability of the union of events *A* and *B* is the sum of the probability of events *A* and *B* minus the probability of the intersection of events *A* and *B*

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Mutually exclusive—Events A and B are mutually exclusive if A and B have no sample points in common; or, if $A \cap B$ is empty. Thus, for mutually exclusive events:

 $P(A \cup B) = P(A) + P(B)$

Example 1 (continued) a. Find P(A)

- b. Find *P(B)*
- c. Find P(C)
- d. Find $P(\overline{A})$
- e. Find $P(A \cup B)$
- f. Find $P(A \cap B)$
- g. Consider each pair of events (*A* and *B*, *A* and *C*, *B* and *C*). List the pairs of events that are mutually exclusive.

Conditional Probability

The probability that event *A* occurs given that event *B* occurred is denoted by P(A|B)

This is a conditional probability; it is read as "the conditional probability of *A* given that *B* has occurred"

Example

A: {even number on throw of fair die}

B: {on a particular throw of the die, the result was a number ≤ 3 }

Conditional Probability

To find the conditional probability that event *A* occurs given that event *B* occurs, divide the probability of that both *A* and *B* occur by the probability that *B* occurs

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Assumption: $P(B) \neq 0$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
$$= \frac{P(2)}{P(1) + P(2) + P(3)}$$
$$= \frac{\frac{1}{26}}{\frac{3}{3}} = \frac{1}{3}$$

Practice of Statistics, 3 rd Edition, Moore and McCabe, pp. 350-351 Age and marital status of women (thousands of women)				
Age				
	18 to 24	25 to 64	65+	Total
Married	3,046	48,116	7,767	58,929
Never Married	9,289	9,252	768	19,309
Widowed	19	2,425	8,636	11,080
Divorced	260	8,916	1,091	10,267
Total	12,614	68,709	18,262	99,585
				7

8

Example from Introduction to the Practice of Statistics. 3rd Edition, Moore and McCabe, pp. 350-351 There is a relationship among the three

probabilities

P(married and age 18 to 24) =

P(age 18 to 24) x *P*(married | age 18 to 24)

Multiplicative Rule and Independent Events

Independent events—Events A and B are said to be independent events if the occurrence of B does not alter the probability that A has occurred;

or, events A and B are independent if

P(A|B) = P(A)

Otherwise, events *A* and *B* are *dependent*

Summary-- for independent events, knowing B does not effect the probability of A

11

Multiplicative Rule and Independent Events The probability that both of two events A and B happen together can be found by P(A and B) = P(A|B)P(B) $P(A \cap B) = P(B)P(A|B)$ Derived from the formula for calculating conditional probability $\frac{P(A \cap B)}{P(B)} = P(A|B)$ 10

A = {observe an even number}

 $B = \{\text{observe a number} \le 4\}$

B A 5 3 4 6 5 3 2 4 6

Example: Three cards are dealt off the top of a well-shuffled deck of playing cards

What is the probability that the first card is a heart?

What is the probability that the second card is a spade?

What is the probability that the first card will be a heart and the second card will be a spade?

What is the probability that the second card will be a spade given us that the first card is a heart?

Probability of the Intersection of Two Independent Events

If events *A* and *B* are *independent*, the probability of the intersection of *A* and *B* equals the product of the probabilities of *A* and *B*; or

 $P(A \cap B) = P(A)P(B)$

The converse is also true---

if $P(A \cap B) = P(A)P(B)$ then events A and B are independent.

16

created using BCL easyPDF Printer Driver