Chapter 11—Multinomial Experiments and Contingency Tables

GOODNESS-OF-FIT TESTS

We will ask: "how are my data distributed?" Towards this aim, we consider goodness-of-fit tests. Goodness-offit tests compare the observed frequency distribution of a sample with a hypothesized frequency distribution. We wish to discern whether or not, apart from sampling error, the observed sample conforms to the hypothesized distribution.

Goodness-of-fit tests are based on count data, i.e., the number of individuals falling in a given category. The attribute observed on each unit sampled determines which category that individual is counted in.

Pearson's χ^2 Goodness-of-Fit Test

Example -- Yule (1923)

We wish to determine whether crossing a yellowround (YR) pea with a green-wrinkled (gw) pea follows classical Mendelian genetics. Yellow is dominant to green; round is dominant to wrinkled. Theory predicts a relative frequency of

in the second generation cross F_2 .

THEORY

Gametes	YR	Yw	gR	gw
	phe	enotypes		
Second Gen. (F ₂)	9 Y	R:3 Yw	: 3 gR : 1	l gw
First Generation (F_1) Yg	Rw		
Parents	YY	RR x ggw ↓	vw	
-				

YR	YYRR	YYRw	YgRR	YgRw
Yw	YYRw	Yyww	YgRw	Ygww
gR	YgRR	YgRw	ggRR	ggRw
gw	YgRw	Ygww	ggRw	ggww

Statistical Hypotheses

 H_0 : The distribution of phenotypes in the F₂ generation follows a 9:3:3:1 distribution, or specify as multinomial probabilities

 $p_{YR} = 9/16$ and $p_{Yw} = 3/16$ and $p_{gR} = 3/16$ and $p_{gw} = 3/16$

 H_1 : The distribution of phenotypes in the F₂ generation does not follow a 9:3:3:1 distribution. $p_{\gamma R} \neq 9/16$ or $p_{\gamma W} \neq 3/16$ or $p_{eR} \neq 3/16$ or $p_{eW} \neq 3/16$

Test statistic

$$\chi^{2} = \sum_{i=1}^{k} \frac{\left(\operatorname{obs}_{i} - \exp_{i}\right)^{2}}{\exp_{i}} \sim \chi^{2}_{df=k-1}$$

where $obs_i = observed$ count in the *i*th category exp_i = expected count in the *i*th category under H_0

k = number of categories

and χ^2 is distributed as a *chi-square random* variable with k - 1 degrees of freedom (df).

Degrees of freedom = number of categories (k) minus the number of sample constants used to calculate the expected frequencies.

In this example, only one sample constant is used

 $\rightarrow n$ (total sample size $n = \sum_{i=1}^{k} obs_i$) When *n* is a known, only *k* - 1 frequencies can be

When n is a known, only k - 1 frequencies can be specified; the last is determined by subtraction and therefore "fills itself in automatically".

Multinomial Distribution

 $P(X_1 = x_1 \text{ and } X_2 = x_2 \text{ and } \dots \text{ and } X_k = x_k) =$

$$\begin{cases} \frac{n!}{x_1!x_2!\cdots x_k!} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k} & \text{when } \sum_{i=1}^k x_i = n \\ 0 & \text{otherwise.} \end{cases}$$

Each of the k components separately has a binomial distribution with parameters n and p_i .

Assumptions

- Sample observations are a random sample of the population.
- Sample observations are independent.

Constraints

- Data are categorical.
- For chi-square approximation:
 - (i) none of the expected frequencies < 1.0(ii) no more than 20% of the expected
 - frequencies < 5.0
 - (i) is more important than (ii).

Set a significance level such as $\alpha = 0.05$

 H_1 is always two-tailed -- we consider only general alternatives.

Critical value $\chi^2_{0.05,3} = 7.815$ (Table A-4, page 775)

Decision rule: H_0 rejected if $\chi^2_{obs} > \chi^2_{crit}$. If test statistic is 7.815 or greater, then reject H_0 .

Step 7:	Data:
---------	-------

Category	Obs.	Expected	Obs - Exp	$(Obs - Exp)^2$
Category	003.	Expected	003 - Exp	Exp
YR	2504	4530 * 9/16 = 2548.1	-44.1	.763
Yw	853	4530 * 3/16 = 849.4	3.6	.015
gR	881	4530 * 3/16 = 849.4	31.6	1.176
gw	292	4530 * 1/16 = 283.1	8.9	.280
	<i>n</i> =	4530		$\chi^2_{obs} = 2.234$
	4530			Nobs =====

 $\chi^2_{obs} = 2.234 < 7.815$

0.10 < P-value < 0.90

Therefore, do not reject $H_{0.}$

No significant difference between observed frequency and the frequency predicted by Mendelian genetics.

Chapter11.doc

This is an example of a *two-way contingency table*

6

		Gender		
		Male	Female	Totals
Brand	Could identify product	<i>n</i> ₁₁	<i>n</i> ₁₂	r_1
Awareness	Could not identify product	<i>n</i> ₂₁	<i>n</i> ₂₂	r ₂
	Totals	c_1	c_2	п

		Gender		
		Male	Female	Totals
Brand	Could identify product	p_{11}	<i>p</i> ₁₂	p_{r1}
Awareness		p_{21}	<i>p</i> ₂₂	p_{r2}
	Totals	p_{c1}	p_{c2}	1

 p_{r1}, p_{r2}, p_{c1} , and p_{c2} are the called *marginal probabilities* for each row ar respectively-- $p_{r1} = p_{11} + p_{12}$ Given by the product of the

Testing Categorical Probabilities: Two-Way tables

Now consider multinomial experiments where data are classified according to two criteria--- *classification wrt two qualitative factors*

Study, based on a survey of 300 TV viewers, looking at relationship between gender of a viewer and the viewer's brand awareness

		Gender		
		Male	Female	Totals
Brand	Could identify product	95	41	136
Awareness	Could not identify product	55	109	164
	Totals	150	150	300

7

Suppose we want to know if the two classifications are independent?

Does knowing the gender of the TV viewer provide information about the viewer's brand awareness?

 H_0 : Brand awareness and gender are statistically independent.

 H_1 : Brand awareness and gender are statistically dependent.

Remember, if two events A and B are independent, P(AB) = P(A)P(B)

In the analysis of contingency tables, if the two classifications are independent,

$$p_{11} = p_{r1}p_{c1} \quad p_{12} = p_{r1}p_{c2}$$
$$p_{21} = p_{r2}p_{c1} \quad p_{22} = p_{r2}p_{c2}$$

To test the hypothesis of independence, first need the *expected or mean count in each cell*

$$E(n_{11}) = np_{11}$$

For the TV viewer example:

$$\hat{E}(n_{11}) = \frac{r_1 c_1}{n} = \frac{(136)(150)}{300} = 68$$
$$\hat{E}(n_{12}) = \frac{r_1 c_2}{n} = \frac{(136)(150)}{300} = 68$$
$$\hat{E}(n_{21}) = \frac{r_2 c_1}{n} = \frac{(164)(150)}{300} = 82$$
$$\hat{E}(n_{22}) = \frac{r_2 c_2}{n} = \frac{(164)(150)}{300} = 82$$

When the null hypothesis is true

$$E(n_{11}) = np_{r1}p_{c1}$$

Since p_{r1} and p_{c1} are unknown, they are estimated by $\hat{p}_{r1} = \frac{r_1}{n}$ and $\hat{p}_{c1} = \frac{c_1}{n}$

By substitution, the estimate of the expected value $E(n_{11})$ is

$$\hat{E}(n_{11}) = n \left(\frac{r_1}{n}\right) \left(\frac{c_1}{n}\right) = \frac{r_1 c_1}{n}$$

The general formula is

$$\hat{E}(n_{ij}) = \frac{(\text{Row total})(\text{Column total})}{\text{Total sample size}}$$

Use the χ^2 statistic to test the null hypothesis of independence---compare observed and expected counts in each cell

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left[n_{ij} - \hat{E}(n_{ij})\right]^{2}}{\hat{E}(n_{ij})}$$

$$\chi^{2} = \frac{(95-68)^{2}}{68} + \frac{(41-68)^{2}}{68} + \frac{(55-82)^{2}}{82} + \frac{(109-82)^{2}}{82} = 39.22$$

What do large values of χ^2 imply?

To determine the cutoff value, we are making use of the fact that the sampling distribution of the χ^2 test statistic is approximately a χ^2 probability distribution when the classifications are independent (under the null hypothesis)

10

9

The appropriate degrees of freedom in a 2-way table are:

(r-1)(c-1)

where r is the number of rows and c is the number of columns

The methods we have learned for a 2x2 twoway table can be generalized to problems with more categories. Could have a 3x2, 4x4, etc. For the TV viewer example,

df = (2-1)(2-1) = 1

For $\alpha = .05$, reject the hypothesis of independence when $\chi^2 > \chi^2_{.05,1} = 3.841$

Since $\chi^2 = 39.22$ exceeds 3.841 conclude that viewer gender and brand awareness are statistically dependent events at $\alpha = .05$ significance level.

Using Table A-4 we can also conclude that p < 0.005

Good software can be found at: <u>http://faculty.vassar.edu/lowry/VassarStats.html</u>

Choose Frequency Data from the menu on the left

Choose either Chi-Square "Goodness of Fit" Test, or Chi-Square, Cramer's V, and Lambda

Chapter11.doc

13

A Word of Caution About Chi-square Tests

- Should be avoided when expected cell <u>counts</u> are too small (< 5)
- If $\chi^2 < \chi^2_{\alpha,df}$ *do not accept the hypothesis of independence---*risking a Type II error and the probability, β of committing such an error is unknown
- If χ² > χ²_{α,df} avoid inferring that a *causal* relationship exists between the classifications
 - the alternative hypothesis states that the two classifications are statistically dependent
 - statistical dependence does not imply causality

14