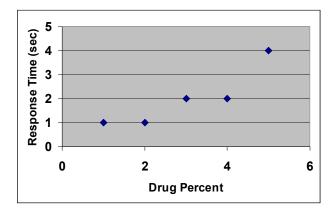
<u>An Estimator of</u> σ

Recall the assumption for least squares regression: ϵ are normally distributed with mean 0 and standard deviation σ

Reasonable to assume that the greater the variability in the random error:

- Greater the errors in the estimation of the model parameters β₀ and β₁
- Greater the error of prediction when ŷ is used to predict y for some value of x


 $\boldsymbol{\sigma}~$ is usually unknown and must be estimated from the data

The best estimate is denoted s_e and is obtained by:

$$s_e = \sqrt{\frac{\text{SSE}}{\text{degrees of freedom for error}}} = \sqrt{\frac{\text{SSE}}{n-2}}$$

Assessing the Utility of the Model: Making Inferences about the Slope

Suppose that the reaction times, *y*, are completely unrelated to the percentage of drug in the blood stream.

What could be said about the values of β_0 and β_1 in the probabilistic model $y = \beta_0 + \beta_1 x + \varepsilon$ if *x* contributes no information for the prediction of *y*?

Recall:

SSE =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} [y_i - (b_0 + b_1 x_i)]^2$$

 s_e is termed the *estimated standard error of the regression model*

Recalling the drug reaction example:

x	У	$\hat{y} =1 + .7x$	$(y-\hat{y})$	$(y-\hat{y})^2$
1	1	.6	(16) = .4	.16
2	1	1.3	(1-1.3) =3	.09
3	2	2.0	(2-2.0) = 0	.00
4	2	2.7	(2-2.7) =7	.49
5	4	3.4	(4-3.4) = .6	.36
			Sum of errors = 0	Sum of squared errors (SSE) = 1.10

$$s_e = \sqrt{\frac{\text{SSE}}{n-2}} = \sqrt{\frac{1.10}{3}} = \sqrt{0.367} = 0.61$$

2

Interpretation

We expect most (approximately 95%) of the observed y values to lie within $2s_e$ of \hat{y} , their respective least squares predicted values

This means that the deterministic part of the model

$$E(y) = \beta_0 + \beta_1 x$$

does not change as x changes

For the linear model, this means that the true slope, β_1 , must be equal to zero.

We can test set up a hypothesis test for this:

 H_0 : $\beta_1 = 0$; the linear model contains no information for the prediction of *y*

 $H_1: \beta_1 \neq 0$; the linear model is useful for predicting *y*

Choice of test statistic is found by considering the sampling distribution of b_1 , the least squares estimator of the slope, β_1

Sampling Distribution of b_1

Given ε distributed iid $N(0,\sigma)$, the sampling distribution of b_1 will be normal with:

$$E(b_1) = \beta_1$$

$$\sigma_{b_{\rm l}} = \frac{\sigma}{\sqrt{\rm SS}_{xx}}$$

 σ_{b_1} is estimated by $s_{b_1} = \frac{s_e}{\sqrt{SS_{xx}}}$

 S_{b_1} is call the estimated standard error of the least squares slope b_1

5

7

The test statistic is the *t*-statistic

$$t = \frac{b_1 - \text{hypothesized value of } \beta_1}{s_{b_1}}$$

where

$$s_{b_1} = \frac{s_e}{\sqrt{SS_{xx}}}$$

By substitution,

$$t = \frac{b_1 - 0}{s_e / \sqrt{SS_{xx}}}$$

Test of Model Utility: Simple Linear Regression

One-tailed test	Two-tailed test
$H_0: \beta_1 \ge 0$	$H_0: \beta_1 = 0$
$H_1:\beta_1 < 0$	H_1 : $\beta_1 \neq 0$
$t = \frac{b_{\rm l} - 0}{s_e / \sqrt{\rm SS}_{xx}}$	$t = \frac{b_1 - 0}{s_e / \sqrt{SS_{xx}}}$
$t < -t_{\alpha(1)}$	$t < -t_{\alpha(2)}$ or $t > t_{\alpha(2)}$
(or $t > t_{\alpha(1)}$ when	
$H_1:\beta_1>0$	

 $t_{\alpha(1)}$ and $t_{\alpha(2)}$ are based on (n-2) df

Assumptions

mean of $\varepsilon = 0$; standard deviation of $\varepsilon = \sigma$ (constant); ε are normally distributed; values of ε are independent For the drug response example define the hypotheses:

$$H_0: \beta_1 = 0$$
$$H_1: \beta_1 \neq 0$$

Let $\alpha = .05$, $n = 5 \Rightarrow 5 - 2 = 3$ df

Rejection region: $|t| > t_{\alpha(2),df} = t_{.05(2),3} = 3.182$

$$b_1 = .7;$$
 $s_e = .61;$ $SS_{xx} = 10$
 $t = \frac{b_1 - 0}{s_e / \sqrt{SS_{xx}}} = \frac{.7}{.61 / \sqrt{10}} = \frac{.7}{.19} = 3.7$

Conclusion?

Reject H_0 and conclude that there is sufficient evidence to support the alternative hypothesis that the slope β_1 is not 0.

The sample evidence indicates that the amount of drug, x, in the blood stream contributes information for the prediction of reaction time, y, when a linear model is used

What conclusion would we have drawn if *t* did not fall in the rejection region (*P*-value > α)?

We fail to reject H_0 ---do not conclude that $\beta_1 = 0$.

- Additional data may indicate that $\beta_1 \neq 0$
- The relationship between *x* and *y* may be more complex and require fitting of another model

 $100(1-\alpha)\%$ Confidence Interval for the Simple Linear Regression Slope β_1

$$b_1 \pm \underbrace{t_{\alpha(2),df} s_{b_1}}_{E}$$

where the estimated standard error of b_1 is calculated by

$$s_{b_{l}} = \frac{s_{e}}{\sqrt{SS_{xx}}}$$

 $t_{\alpha(2)}$ is based on n-2 degrees of freedom

Same assumptions as for hypothesis tests for b_1

For the drug response example the 95% confidence interval for the slope, β_1

$$b_{1} \pm t_{\alpha(2),df} s_{b_{1}} = b_{1} \pm t_{.05(2),3} s_{b_{1}} = .7 \pm 3.182 \left(\frac{s_{e}}{\sqrt{SS_{xx}}}\right)$$
$$= .7 \pm 3.182 \left(\frac{.61}{\sqrt{10}}\right)$$
$$= .7 \pm .61$$
$$\Rightarrow (.09, 1.31)$$

Interpretation?

We can be 95% confident that the true mean increase in reaction time per additional 1% of the drug is between .09 and 1.31 seconds.

This inference is only meaningful over the sampled drug range of 1% to 5%. Since all the values in this interval are positive, it appears that β_1 is positive and that the mean of *y* increase as *x* increases.

- 1. Select Tools (or Data) > Data Analysis...
- 2. Select Regression
- Input Y range and X range—if you included Column labels in your data ranges, check Labels; Check Confidence Level (default is 95%); might also want to check Residual Plots and Normal Probability Plots

SUMMARY OUTPUT

10

Regression Statistics				
Multiple R	0.904			
R Square	0.817			
Adjusted R Square	0.756			
Standard				
Error	0.606			
Observations	5			

ANOVA

							Significance
	df		SS		MS	F	F
Regression		1		4.9	4.900	13.364	0.0354
Residual		3		1.1	0.367		
Total		4		6			

	Standard					Upper
	Coefficients	Error	t Stat	P-value	95%	95%
Intercept	-0.1	0.635	-0.157	0.8849	-2.121	1.921
DrugPct	0.7	0.191	3.656	0.0354	0.091	1.309

<u>Using the LS Model for Estimation and</u> <u>Prediction</u>

Estimation \rightarrow use of model for estimating the mean value of y, E(y), for a specific value of x.

$$E(y|x) = \beta_0 + \beta_1 x$$

Fitted line gives us $\hat{y} = b_0 + b_1 x$ and this implies $(\hat{y} | x = x_i) = b_0 + b_1 x_i$

Estimation gives the mean response for *all* values of y for a given value of x

In the drug reaction example, the regression equation gives us an estimate of the mean response time for all people whose blood contain x% of the drug **Prediction** \rightarrow use of the model for predicting a new individual y value for a given x value

In the drug reaction example, one may want to predict the reaction time for a specific person who possesses 4% of the drug in the bloodstream

In estimation, we are attempting to estimate the mean value of *y* for a very large number of experiments at the given *x* value

In prediction, we are trying to predict the outcome, *y*, for a single experiment at the given *x* value

13

We use the LS prediction equation, $\hat{y} = b_0 + b_1 x$, for both estimation of the mean value of y and for prediction of a specific new value of y

We can create *confidence* and *prediction intervals* for estimations and predictions.

Standard error of \hat{y} , $\sigma_{\hat{y}}$

$$\sigma_{\hat{y}} = \sigma_{\sqrt{\frac{1}{n} + \frac{\left(x_0 - \overline{x}\right)^2}{SS_{xx}}}}$$

Standard error of prediction, $\sigma_{(y-\hat{y})}$

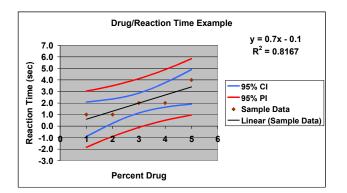
$$\sigma_{(y-\hat{y})} = \sigma_{\sqrt{1+\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{SS_{xx}}}}$$

where σ is the standard deviation of the random error ε --use s_e as an estimate of σ ; you will need \overline{x} and SS_{xx} A $100(1-\alpha)$ % Confidence Interval for the mean value of *y* at $x = x_0$

14

16

$$\hat{y} \pm t_{\alpha(2),df} \sigma_{\hat{y}} = \hat{y} \pm t_{\alpha(2),(n-2)} s_e \sqrt{\frac{1}{n} + \frac{\left(x_0 - \overline{x}\right)^2}{SS_{xx}}}$$


(formula in Triola, problem 26 page 566)

A $100(1-\alpha)$ % Prediction Interval for an individual new value of *y* at $x = x_0$

$$\hat{y} \pm t_{\alpha(2),df} \sigma_{\hat{y}} = \hat{y} \pm t_{\alpha(2),(n-2)} s_e \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{SS_{xx}}}$$

(formula in Triola, page 561)

17

DrugPct	RepSec	x-xbar	(x-xbar)^2		tcrit	3.182	
1	1	-2	4		S	0.606	
2	1	-1	1				
3	2	0	0				
4	2	1	1				
5	4	2	4				
3			10				
xnot	yhat	E-CI	E-PI	CILow	CIUp	PILow	PIUp
1	0.6	1.494	2.439	-0.894	2.094	-1.839	3.039
1.25	0.775	1.372	2.367	-0.597	2.147	-1.592	3.142
1.5	0.95	1.257	2.302	-0.307	2.207	-1.352	3.252
1.75	1.125	1.151	2.246	-0.026	2.276		3.371
2	1.3	1.056	2.199	0.244	2.356	-0.899	3.499
2.25	1.475	0.976	2.161	0.499	2.451	-0.686	3.636
2.5	1.65	0.915	2.134	0.735	2.565	-0.484	3.784
2.75	1.825	0.876	2.118	0.949	2.701	-0.293	3.943
3	2	0.862	2.112	1.138	2.862	-0.112	4.112
3.25	2.175	0.876	2.118	1.299	3.051	0.057	4.293
3.5	2.35	0.915	2.134	1.435	3.265	0.216	4.484
3.75	2.525	0.976	2.161	1.549	3.501	0.364	4.686
4	2.7	1.056	2.199	1.644	3.756	0.501	4.899
4.25	2.875	1.151	2.246	1.724	4.026	0.629	5.121
4.5	3.05	1.257	2.302	1.793	4.307	0.748	5.352
4.75	3.225	1.372	2.367	1.853	4.597	0.858	5.592
5	3.4	1.494	2.439	1.906	4.894	0.961	5.839

18

The prediction interval for an individual new value of y is always wider than the corresponding CI for the mean value of y

Error of estimation and error of prediction take their smallest values when $x_0 = \overline{x}$.

The farther x_0 lies from \overline{x} , the larger will be the errors of estimation and prediction---this is because the deviation is larger at the extremes of the interval where the largest and smallest values of x in the data set occur

The CI width grows smaller as n is increased----in theory you can obtain as precise an estimate of the mean value of y (for a given value of x) as desired by selecting a large enough sample

The prediction interval for a new value of y also gets smaller as n increases, but there is a lower limit on its width---the interval can get no smaller than $\hat{y} \pm z_{\alpha(2)}s_e$

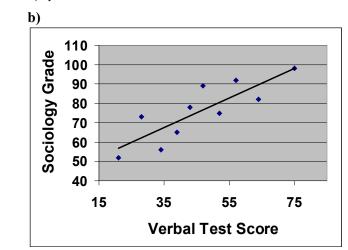
The only way to obtain more accurate predictions for new values of y is to reduce the standard deviation of the regression model----improve the model

Problem 11.77, page 568 (McClave and Sincich, 9th Edition)

A study was conducted to determine whether a student's final grade in an introductory sociology course is linearly related to his or her performance on the verbal ability tests administered before college entrance.

- a) Find the least squares line relating y to x
- b) Plot the data points and graph the least squares line
- c) Do the data provide sufficient evidence to indicate that a positive correlation exists between verbal score and final grade?
- d) Find a 95% CI for the slope, β_1
- e) Predict a student's final grade in the introductory course when his or her verbal test score is 50. Use a 95% prediction interval.
- f) Find a 95% CI for the mean final grade for all students scoring 50 on the college entrance verbal exam.

Student	Verbal Ability Test Score (x)	Final Sociology Grade (y)
1	39	65
2	43	78
3	21	52
4	64	82
5	57	92
6	47	89
7	28	73
8	75	98
9	34	56
10	52	75

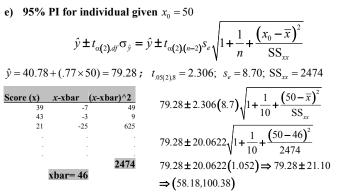

SUMMARY	
OUTPUT	

0.840					
0.040					
0.705					
0.668					
8.704					
10					
df	SS	MS	F	Significance F	
			19.141	0.002	
8 9	2056.000	/5./53			
Coefficients St	andard Error	t Stat P	-valuel	Lower 95%Up	oper 95%
40.78	8.51	4.79	0.00	21.17	60.40
0.77	0.17	4.38	0.00	0.36	1.17
Grade	Residuals				
1 70.64	-5.64				
	8.704 10 df Coefficients St 40.78 0.77	8.704 10 df SS 1 1449.974 8 606.026 9 2056.000 Coefficients Standard Error 40.78 8.51 0.77 0.17 Grade Residuals 1 70.64	8.704 10 df SS MS 1 1449.974 1449.974 8 606.028 75.753 9 2056.000 2056.000 Coefficients Standard Errort Stat P 40.78 0.77 0.17 4.38 Grade Residuals 1 70.64 -564	at SS MS F 1 1449.974 1449.974 19.141 8 6060.26 75.753 9 2056.000 9 2056.000 1 40.78 8.51 4.79 0.00 0.77 0.17 4.38 0.00 0 0.77 5.64 -5.64	at SS MS F Significance F 1 1449.974 1449.974 19.141 0.002 8 606.026 75.753 9 2056.000 9 2056.000 21.17 0.00 21.17 0.77 0.17 4.38 0.00 0.36

22

21

a) $\hat{y} = 40.78 + 0.77x$



c) Test $H_0: \beta_1 = 0$ versus $H_1: \beta_1 > 0$

 $t = \frac{0.77 - 0}{0.17} = 4.53$; $t_{.05(1),8} = 1.860$ \Rightarrow reject the null

Conclude that there is sufficient sample evidence to indicate that there is a positive association between verbal score and final sociology grade (p < 0.005).

d) 95% CI for $\beta_1: b_1 \pm \underbrace{t_{.05(2),8}SE_{b_1}}_{E} \Rightarrow 0.77 \pm 2.306(0.17) \Rightarrow (.38, 1.16)$

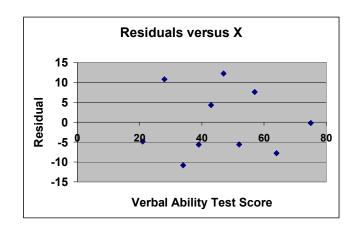
The probability is 0.95 that a randomly selected student from the population will have a final sociology grade between 58.18 and 100.38 if his/her verbal score was 50. –the 95% PI estimates the central 95% of the values of y for members of the population with a specified value of x.

f) 95% CI for mean given $x_0 = 50$

$$\hat{y} \pm t_{\alpha(2),df} \sigma_{\hat{y}} = \hat{y} \pm t_{\alpha(2),(n-2)} s_e \sqrt{\frac{1}{n} + \frac{\left(x_0 - \overline{x}\right)^2}{SS_{xx}}}$$

$$79.28 \pm 20.0622 \sqrt{\frac{1}{10} + \frac{\left(50 - 46\right)^2}{2474}}$$

$$79.28 \pm 20.0622 (0.326) \Rightarrow 79.28 \pm 6.55 \Rightarrow (72.73,85.83)$$


We are 95% confident that the mean final grade in the introductory sociology course will be between 72.73 and 85.83 for all students whose verbal score was 50.

A PI differs conceptually from a CI.

25

- -- A CI estimates an unknown population parameter, which is a numerical characteristic or summary of the population.
- -- A PI does not estimate a population parameter; rather, a PI estimates the potential data value for an individual—it describes an interval into which a specific percentage of the population may fall.

<u>Residual Plots</u>—examine for presence or absence of patterns

