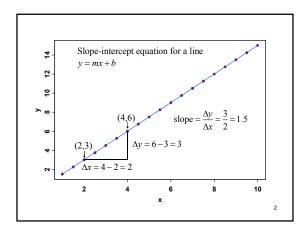
Simple Linear Regression

Regression equation—an equation that describes the average relationship between a response (dependent) and an explanatory (independent) variable.

I



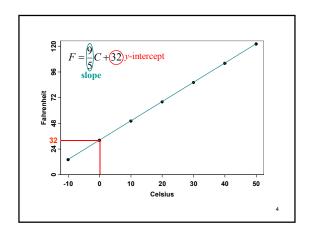
Deterministic Model

A model that defines an exact relationship between variables.

Example: y = 1.5x

There is no allowance for error in the prediction of y for a given x.

3



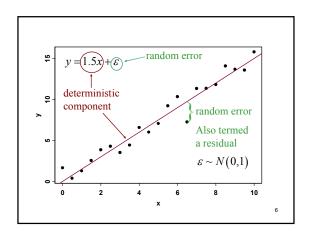
Probabilistic Model

A model that accounts for random error.

Includes both a deterministic component and a random error component.

y = 1.5x + random error

This model hypothesizes a probabilistic relationship between y and x.



Probabilistic Model—General Form

y = Deterministic component + Random component

where *y* is the "variable of interest".

Assume that the mean value of the random error is zero \rightarrow the mean value of y, E(y), equals the deterministic component of the model

7

First-Order (Straight Line) Probabilistic Model

$$y = \beta_0 + \beta_1 x + \varepsilon$$
 where $y = D$ ependent variable $x = I$ ndependent variable

 $\beta_0 =$ population y-intercept of the line—the point at which the line intersects or cuts through the y-axis

 β_1 = **population slope of the line**—the amount of increase (or decrease) in the deterministic component of y for every 1-unit increase (or decrease) in x.

 \mathcal{E} = random error component

8

First-Order (Straight Line) Probabilistic Model

 β_0 and β_1 are population parameters. They will only be known if the population of all (x, y) measurements are available.

 β_0 and β_1 , along with a specific value of the independent variable x determine the **mean value** of the dependent variable y.

9

Model Development

 β_0 and β_1 will generally be unknown.

The process of developing a model, estimating model parameters, and using the model can be summarized in these 5-steps:

 Hypothesize the deterministic component of the model that relates the mean, E(y) to the independent variable x

$$E(y) = \beta_0 + \beta_1 x$$

2. Use sample data to estimate unknown model parameters

find estimates: $\hat{\beta}_0$ or b_0 , $\hat{\beta}_1$ or b_1

Model Development (continued)

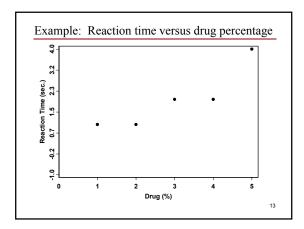
3. Specify the probability distribution of the random error term and estimate the SD of this distribution

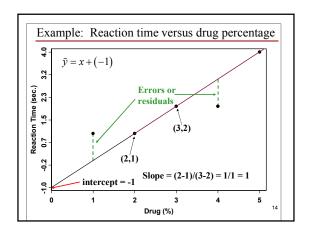
 $\varepsilon \sim N(0,\sigma)$ – will revisit this later

- 4. Statistically evaluate the usefulness of the model
- 5. Use model for prediction, estimation or other purposes

Example: Reaction time versus drug percentage

Subject	Amount of Drug (%) x	Reaction Time (seconds)	
1	1	1	
2	2	1	
3	3	2	
4	4	2	
5	5	4	





Example: Reaction time versus drug percentage

Errors of prediction---vertical differences between the observed and the predicted values of *y*

-				
x	y	$\tilde{y} = -1 + x$	$(y-\tilde{y})$	$(y-\tilde{y})^2$
1	1	0	(1-0) = 1	1
2	1	1	(1-1) = 0	0
3	2	2	(2-2) = 0	0
4	2	3	(2-3) = -1	1
5	4	4	(4-4) = 0	0
			Sum of errors = 0	Sum of squared errors (SSE) = 2

15

Least Squares Line

Also called *regression line*, or the *least squares prediction equation*

Method to find this line is called the *method of least* sauares

For our example, we have a sample of n = 5 pairs of (x, y) values. The fitted line that we will calculate is written as $\hat{y} = b_0 + b_1 x$

 \hat{y} is an estimator of the mean value of y, E(y);

 b_0 and b_1 are estimators of β_0 and β_1

16

Least Squares Line (continued)

Define the sum of squares of the deviations of the y values about their predicted values for all n data points as:

SSE =
$$\sum_{i=1}^{n} (y_i - \hat{y})^2 = \sum_{i=1}^{n} [y_i - (b_0 + b_1 x_i)]^2$$

We want to find b_0 and b_1 to make the SSE a minimum---termed *least squares estimates*

 $\hat{y} = b_0 + b_1 x$ is called the least squares line

Formulas for the Least Squares Estimates

Slope:
$$b_1 = \frac{SS_{xy}}{SS_{xx}}$$
 or $b_1 = r \frac{SD_y}{SD_x}$

$$\begin{aligned} s_{xy} &= \mathrm{SS}_{xy} = \sum (x_i - \overline{x}) \big(y_i - \overline{y} \big) & s_{xx} &= \mathrm{SS}_{xx} = \sum (x_i - \overline{x})^2 \\ &= \sum x_i y_i - \frac{\left(\sum x_i\right) \left(\sum y_i\right)}{n} & = \sum x_i^2 - \frac{\left(\sum x_i\right)^2}{n} \end{aligned}$$

y-intercept:
$$b_0 = \overline{y} - b_1 \overline{x} = \frac{\sum y_i}{n} - b_1 \frac{\sum x_i}{n}$$

n =sample size

LS Calculations for Drug/Reaction Example

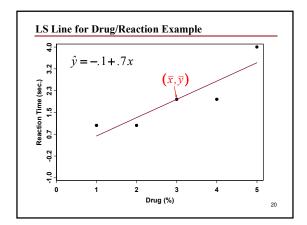
X_i	y_i	x_i^2	$x_i y_i$
1	1	1	1
2	1	4	2
3	2	9	6
4	2	16	8
5	4	25	20
$\sum x = 15$	$\sum v_{\cdot} = 10$	$\sum x^2 = 55$	$\sum x.v. = 37$

$$b_1 = \frac{7}{10} = 0.7$$

$$b_0 = \frac{10}{5} - (.7)\frac{15}{5}$$
$$= 2 - (.7)(3)$$

$$SS_{xy} = 37 - \frac{(15)(10)}{5} = 37 - 30 = 7$$
 $SS_{xx} = 55 - \frac{(15)^2}{5} = 55 - 45 = 10$
 $\hat{y} = -.1 + .7x$

19



LS Calculations for Drug/Reaction Example

x	y	$\hat{y} =1 + .7x$	$(y-\hat{y})$	$(y-\hat{y})^2$
1	1	.6	(16) = .4	.16
2	1	1.3	(1-1.3) =3	.09
3	2	2.0	(2-2.0) = 0	.00
4	2	2.7	(2-2.7) =7	.49
5	4	3.4	(4-3.4) = .6	.36
			Sum of errors = 0	Sum of squared errors (SSE) = 1.10

The LS line has a sum of errors = 0, but SSE = 1.1 < 2.0 for visual model

21

Least Squares Line—Interpretation of $\hat{y} = -.1 + .7x$

Estimated intercept is negative

→ that the estimated *mean reaction time* is equal to -0.1 seconds when the amount of drug is 0%.

What does this mean since negative reaction times are not possible?

Model parameters should be interpreted only within the sampled range of the independent variable.

22

Least Squares Line—Interpretation of $\hat{y} = -.1 + .7x$

The slope of 0.7 implies that for every unit increase of x, the *mean value* of y is estimated to increase by 0.7 units.

In the context of the problem:

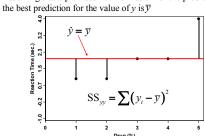
For every 1% increase in the amount of drug in the bloodstream, the mean reaction time is estimated to increase by 0.7 seconds over the sampled range of drug amounts from 1% to 5%.

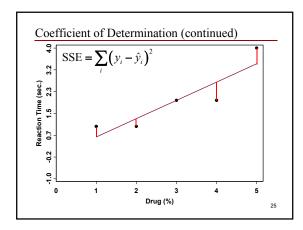
23

Coefficient of Determination

A measure of the contribution of x in predicting y

Assuming that x provides no information for the prediction of y, the best prediction for the value of y is \overline{Y} .





Coefficient of Determination (continued)

 $SS_{yy} = \sum (y_i - \overline{y})^2$ --total sample variation around mean

 $\label{eq:SSE} \text{SSE} = \sum \left(y_i - \hat{y}_i\right)^2 \text{ ---unexplained sample variability after}$ fitting

 SS_{yy} - SSE --explained sample variability attributable to linear relationship

$$\frac{SS_{yy} - SSE}{SS_{yy}} = \frac{explained}{total} = \frac{explained}{variability} = \frac{explained}{variability} = \frac{explained}{variability}$$

26

Coefficient of Determination (continued)

$$r^{2} = \frac{SS_{yy} - SSE}{SS_{yy}} = 1 - \frac{SSE}{SS_{yy}}$$
Unexplained variability

In simple linear regression r^2 is computed as the square of the correlation coefficient, r

 $0 \le r^2 \le 1$

<u>Interpretation</u>— $r^2 = .75$ means that the sum of squared deviations of the y values about their predicted values has been reduced by 75% by the use \hat{y} , instead of \overline{y} , to predict y of the least squares equation.

