Starting Definitions

- Data
- Statistics
- Population
- Census
- Sample
- Parameter
- Statistic

Observational Studies

Observations or measurements of specific characteristics with no attempt to modify the subjects being studied

- Three types
 - Cross-sectional study (at one point in time)
 - Retrospective (case-control) study
 - Prospective (longitudinal or cohort) study

Where do data come from?

Common ways of obtaining data

- Observational studies
- Experiments
- Sample Surveys

Data

- Quantitative
 - Discrete
 - Continuous
- Qualitative
 - Nominal
 - Ordinal

Interval level measurements
Ratio level measurements
Observational Studies (continued)
Interpretation of results subject to effects of **confounding**
- **Confounding variable** is one that affects the response variable and is related to the explanatory variable
- Can often establish an association, but generally can’t conclude cause and effect

Experiments (continued)
Observe effects on subjects after the application of some **treatment**
- Might want to compare a treatment versus a control or multiple treatments
- Key elements in experimental design are
 - Control for effects of variables
 - Use replication
 - Use randomization

Experiments (continued)
- Controlling for effects of variables
 - blinding
 - placebo effect
 - double dummy
 - blocking
- Replication and sample size
 - need sufficiently large enough samples to be able to distinguish between a true effect and natural variability
 - experimental results should be reproducible

Sampling Strategies
Using randomization
Expect all components of the population to be approximately proportionately represented
- **Random sample**: each individual has an equal chance of being selected
- **Simple random sample**: each sample of the same size n has the same chance of being chosen
- **Probability sample**: each member has a known chance of being selected
Sampling Strategies (continued)

• Other sampling techniques
 – Systematic sampling
 – Stratified sampling
 – Cluster sampling
 – Convenience sampling

• Good designs may combine elements
 – Randomized block design experiment
 – Multistage sampling

Sample Surveys

• a type of observational study
• phone, mail, email, web-based, in person
• some additional issues
 – Wording of questions can introduce bias (deliberate or unintentional)
 • “Do you agree…”?
 – Ordering of questions (planting ideas)
 – Convenience samples/Self-selected samples
 – Desire of respondents to please
 – Confidentiality concerns may influence responses
 – Non-response bias

Fundamental Rule

Data must be representative of the population with regards to the question(s) of interest
-- regardless of how data were collected
-- random selection
 ❖ Helps to ensure that all components of the population will be approximately proportionately represented—prevents selection bias

Sampling (chance) error

• Difference between the sample result and the true population result due to chance sample fluctuations.
• Will never know the population parameter value exactly, even with perfect sampling
• Estimate = Population parameter value + chance error

Nonsampling error

• Errors due to sample data that are incorrectly collected, recorded, or analyzed
• Estimate = Population parameter value + bias + chance error
Things to be aware of

• Already mentioned
 – Sample sizes
 – Loaded questions
 – Order of questions
 – Nonresponse
 – Association versus causation

Things to be aware of

• Some other potential issues
 – Graphs used to exaggerate or understate (scaling of axes)
 – Pictographs
 – Percentages (misleading or unclear)
 – Missing data
 • At random meaning unrelated to values
 • Special reasons
 – Self-interest studies
 – Precise numbers \(\Rightarrow \) accuracy