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Several neural networks have been proposed in the general literature for pattern recogni-
tion and clustering, but little empirical comparison with traditional methods has been done. The
results reported here compare neural networks using Kohonen learning with a traditional clus-
tering method (K-means) in an experimental design using simulated data with known cluster
solutions. Two types of neural networks were examined, both of which used unsupervised
learning to perform the clustering. One used Kohonen learning with a conscience and the other
used Kohonen learning without a conscience mechanism. The performance of these nets was
examined with respect to changes in the number of attributes, the number of clusters, and the
amount of error in the data. Generally, the X-means procedure had fewer points misclassified
while the classification accuracy of neural networks worsened as the number of clusters in the
data increased from two to five.

Key words: K-means, Kohonen, Monte Carlo simulation, neural networks, nonhierarchical
clustering.

Introduction

Although the basic concept of neural networks (NNs) was envisioned as far back
as the 1950’s, the theory and application of the technique has only recently come into
the forefront. Neural networks are particularly interesting because of their inherent
claim to analyze noisy data and to deal with problems that have no clear cut solution,
in addition to their critical differentiation from other techniques, namely their ability to
learn.

Researchers are developing neural network models for various purposes, including
managerial problems such as handling census data (Openshaw & Wymer, 1991), fore-
casting (Murtagh, 1991a), time-varying data (Rowher, 1991), and the traveling salesman
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Means assisted with the neural network analyses.
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problem (Fort, 1991). Lippmann (1987) provides a basic overview of neural networks
directed at pattern recognition. Neural networks in the general area of grouping or
clustering have also been proposed (Ahalt, Krishnamurthy, Chen, Melton, 1990; Gath
& Geva, 1988; Krishnamurthy, Ahalt, Melton, Chen, 1990; Osipenko, 1988; Wan,
Wong, & Prusinkiewicz, 1988).

One author (Bezdek, 1991) has likened the level of activity in this field to a ‘‘feed-

ing frenzy’’. Literally hundreds of articles have been written (see, for example, the

Journal of Neural Networks or the Proceedings of the International Conference on
Neural Networks) but little comparison with traditional techniques is available. Fur-
ther, different applications of the same basic technique may produce different results
leading to a lack of stability in the cluster solutions. For example, Balakrishnan, Coo-
per, Jacob, & Lewis (1992) obtained different cluster solutions using the Bucklin and
Srinivasan (1991) coffee data on three different neural networks, all of which differed
from the solutions obtained by using K-means clustering. The cluster sizes and their
underlying characteristics changed as the number of training iterations changed. Sim-
ilarly, even the K-means results differed depending on whether the algorithm was
permitted multiple iterations and whether cluster seeds were input.

As mentioned earlier, increasingly, newer technologies, such as neural networks,
are being considered as tools in a researcher’s kit. However, before this shift away from
the employment of more traditional statistical techniques to the newer technology gets
underway in earnest, it is imperative that researchers demonstrate clearly the potential
advantages of neural networks in dealing with clustering problems. In other words, one
needs to document the specific advantages of neural networks as well as to identify the
conditions under which they may be superior to traditional techniques. In this regard,
Bezdek (1991) indicates that new algorithms need to be tested for such characteristics
as complexity, convergence, stability, robustness, and performance validation.

Lack of comparative analysis is not unique to the neural network field. A similar
situation occurred in the clustering area with many algorithms and stopping rules pro-
posed without comparison with each other. Users had little guidance prior to the work
of Milligan and Cooper (1985) and others (e.g., Dubes, 1987) about the potential effec-
tiveness of thirty stopping rules for determining the number of clusters in a data set.
Some work comparing neural networks with conventional methods has already begun
for some algorithms (e.g., Bezdek, 1990; Bezdek & Hathaway, 1990; Srivastava &
Murty, 1990.) Bezdek and Bobrowski (1990) and others have been evaluating fuzzy
clustering algorithms, which can overlap with some neural network models.

In this paper, we specifically compare the nonhierarchical clustering capabilities of
a class of neural networks using Kohonen learning with a K-means clustering proce-
dure. That is, the focus of this study is on the ability of the procedures to correctly
recover the known cluster structure in the data. Performance validation studies, in
terms of the number of misclassified points, are conducted on data generated by a
method used in the Milligan and Cooper (1985) study on clustering stopping rules. The
remainder of the paper is organized as follows. The next section is an introduction to
neural networks and their features as employed in this study. The methodology for this
study is then outlined, followed by the data analysis. The final section contains the
conclusions and limitations of this study, along with directions for future research.

Neural Networks

The concept of neural networks (NNss) originated with work on mammalian brains
with the goal of designing systems to replicate their functioning. A neural network
consists of two basic components: processing elements (which can have a local mem-
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# of nodes = # of clusters

Output Layer
(Kohonen Learning)

Normalization
Layer
Input Layer
# of nodes = # of attributes
FIGURE 1.
Sample Net.

ory and perform localized information processing activities) and their interconnections.
The processing element in a neural network can be considered akin to a neuron in a
mammalian brain. The processing element receives a number of input signals and either
generates a single output signal or does not generate any output signal (i.e., the output
signal value is zero). This signal is then ‘‘sent’’ to one or more processing elements via
the interconnections. Within the network each processing element corresponds to a
node. For example, in Figure 1 there are ten processing elements or nodes.

Unlike conventional processing using a von-Neumann computer, the NN program-
mer does not specify an algorithm for the system to execute, instead the *‘programmer’’
specifies the structure of the neural network (Caudill, 1987). This is accomplished by
defining the interconnection architecture between the processing elements, the rules
that determine whether or not a processing element will fire (i.e., generate a signal) and
the rules governing changes in the relative importance of the individual interconnec-
tions to a processing element’s training data.

A typical neural network is organized into layers. At the lowest level, there is the
input layer that contains the nodes through which the data are input into the network
and at the top there is the output layer that generates the output interpreted by the user.
Between the input layer and the output layer, there could be one or more layers, which
are called the hidden layers. The output of the input layer is fed to the first hidden layer
in the network and forms the input signals to this hidden layer. The output from the first
hidden layer is then fed to the next and so on, until the signals reach the output layer
which in turn generates a signal interpreted by the user.

In addition to the actual structure of the networks, (i.e., the number of layers and
the interconnections), several other factors need to be specified before a neural network
can be utilized. Since several sources discuss the concept of neural networks in detail
(see for example, Hecht-Nielsen, 1990; Nelson & Illingworth, 1991; Rumelhart, Mc-
Clelland, and the PDP Research Group, 1987), here we will only briefly discuss the
generic neural network issues.

The first step in developing a neural network framework is specifying what the
input layer nodes represent. For example, in the traveling salesman problem, these
nodes represent cities. In the case of word identification, they could be letters. In
market segmentation, they could be lifestyle attributes or demographic characteristics
of individuals. Within the context of clustering, the input layer nodes represent the
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attributes associated with the data and each node in the output layer corresponds to a
cluster.

How the nodes are connected to each other constitutes the system’s knowledge
and determines how the neural network will respond to any arbitrary input. A connec-
tion between two nodes could be excitatory, in which case the connection between the
nodes have positive weights; or they could be inhibitory, in which case the connection
between the two nodes have negative weights. Thus, the weight w ij is positive if node
J excites node i and negative if j inhibits i. The strength of the connection is given by
the absolute value of the weight w;. The pattern of connectivity can be represented by
a weight matrix W in which w ij represents the strength and sense (i.e., excitatory or
inhibitory), of the connection between j and i.

The nodes in each layer need a framework to process the information. Each node
takes in inputs and generates outputs. Except for the input layer, generally each node
in a layer takes the output of the nodes to which it is connected from the previous layer
and combines it with the weights of the connections, typically as the weighted sum of
the outputs, to generate an input value for the node. If o ; represents the output of the
J-th node connected to node i, then input / i=2 Wij0;, where the summation is over
all nodes connected to node i from the previous layer. This combination of inputs to a
node is referred to as the summation function and if it is a weighted sum, the summation
function is called the ‘“‘sum’’.

The input I; is then transformed by the node i using a transform furiction that is
usually nonlinear. A linear transform function within the Neuralworks Professional II
package (Neuralware, 1991) is just the sum itself. The result of the transformation forms
the output, 0;, of the node i. Whether this output o; forms the input to a node k in the
next layer depends on whether there is competition between the other nodes in the
layer to which node i belongs. If there is competition within a layer, only the node
generating the highest output value as a result of the transformation will generate an
output to the next layer, all other nodes will generate zero as the output. If there is no
competition between the nodes, all the nodes would generate an output and as dis-
cussed earlier, the outputs would be combined to form the input to the nodes in the next
layer.

Another important factor in the design of neural networks is the learning rule used
by the various layers in the network. There are two broad categories of learning:
supervised and unsupervised. In supervised learning the data used for learning pur-
poses has information about the ‘‘correct” output associated with each training or
learning input data item. For the purposes of clustering-based research, we focused on
unsupervised learning as the researchers are not aware of the correct classification of
each data item. More specifically, we used Kohonen’s learning rule and a variation on
the theme implemented as the self-organizing-map in Neuralworks Professional II. A
detailed discussion of the Kohonen approach can be found in Kohonen (1982a, 1982b;
1989). We now discuss the salient features of the unsupervised learning approach.

Unsupervised Learning

In unsupervised learning, the data used for learning purposes does not contain
information on the ‘‘correct’ output. In the current study, the cluster membership, for
a given input vector is not provided in the training sample. The network, therefore,
needs to learn on its own to classify each of the input vectors into the various clusters.

One of the popular learning approaches to unsupervised learning is the learning law
ascribed to Kohonen and called the Kohonen Learning Law. This approach is more
consistent with traditional clustering techniques. Although several researchers have
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been associated with the law, Kohonen’s work seems to have focused the research in
the area leading to his name being associated with the work (Hecht-Nielsen, 1990).

If in a neural net there is a layer in which the nodes utilize Kohonen-learning, then
the layer is typically called a Kohonen layer. Suppose there are n nodes in the Kohonen
layer and each node receives m inputs. The m inputs would correspond to the m
attributes of each data point in the data set. Associated with each input would be a
weight. When the input vector enters the Kohonen layer, the processing elements
compete to produce an output. The winner is determined based on some distance
metric/function between the weight vector of the node and the input vector. The node
having the closest weight vector to the input vector generates an output 0; = 1 and the
others produce an output of zero. The node that wins incrementally modifies its weights
using some learning scheme while the weights associated with the other nodes stay at
their original values.

Formally, suppose the weight vector associated with node i is denoted as w; =
(Wi1» Wiz, «++, Wim) ! and the input vector as x = (x;, X5, ..., X,,) ", where Wi
indicates the weight assigned to input x; going into the node i. Each element in the
Kohonen layer computes the distance between its weight vector and the input signal,
thus d; = D(x, w;), where the distance measurement function D is typically either the
standard Euclidian or the spherical arc distance measurement. (The Euclidian distance
between two vectors X; = (X1q, «--, X1,) . and X, = (x31, -.- , X3,) T is given by
(Zj((xyj - xzj)z)”2 while the spherical arc distance is given by 1 — x;. x, which is
equal to 1 — cos (6) when x; and x, are normalized to unit length.)

The node with the smallest d; value wins the competition between the nodes (in
that layer). In case of a tie, since the nodes are numbered from left to right, the node
with the lowest processing element index number wins. Learning then takes place
based on the following weight modification principle or the Kohonen learning law:
wiV = wold + aD(x, w%)o;, where a is a constant, and 0 < « =< 1. Since o; can
take on only zero or one values, the winning processing element adjusts its weight and

the losing processing elements retains its old weight: w"% = wi‘"d. As a result of
learning the weight vector moves a fraction of the way to align itself with the input
vector x. '

Using a neural net, therefore, is a two stage process. In the first stage the network
is trained to recognize the data. It is during this stage that the system uses the learning
rule. Once the network is trained, the second stage called the recall stage, involves
using the trained network to classify the data points. Classification in the recall stage
occurs by determining as before the distance between each of the input vectors and the
weight vectors associated with each output node. Each input vector then is assigned to
that node for which the distance between its weight vector and the input vector is the
minimum.

Network Architecture

Our analysis primarily focused on two types of networks, both of which were
created using the commercially available software, Neuralworks Professional II. The
first network (see Figure 1) had three layers: an input layer with the number of input
nodes equal to the number of attributes of the data set; a normalization layer, which
normalizes the input vector; and an output layer which has the same number of nodes
as the number of clusters in the data set. The output layer is the classification layer and
uses the Kohonen learning rule during the learning process (Table 1). This type of
network for ease of exposition will be referred to as a Type 1 network.

The second type of network (see Figure 2) has an input layer as in the first network.
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TABLE 1

Network Characteristics

Characteristic
Layer Function Input Input
Summation Function Sum Sum
Layer 1 Transfer Function Linear Linear |
Output Function Direct Direct
Learning Rule None None
Layer Function Normalization SOM
Summation Function Norm-Muit SOM
Transfer Function Linear Linear
Layer 2 Output Function Direct SOM
Learning Rule None 1 SOM
Layer Function - Output Output
Summation Function Sum Sum
Layer 3 Transfer Function Direct Direct
Output Function Oné Highest One
Highest
Learning Rule Kohonen None

However, here the hidden layer uses the self organizing map (SOM) learning rule as
implemented in the Neuralworks Professional II package. This rule uses a conscience
mechanism to prevent a particular node from assuming responsibility for the entire data
set (DeSieno, 1988). In this approach, the conscience mechanism ensures that, along
with the winning node, nodes around it within a prespecified neighborhood also update
their weights. The neighborhood for the current study was set as one node on either
side of the winning node. In addition, there is an output layer that is responsible for the
classification. Each node in the output layer is connected to a specific region in the
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- # of nodes = # of clusters

Output Layer
(Kohonen Learning)

S O M Layer
with Conscience

Input Layer

# of nodes = # of attributes

FIGURE 2.
Single Layer Self Organizing Map with Conscience.

hidden layer (Figure 2). This SOM-layer network is labelled Type 2 to distinguish it
from the earlier network.

An Example

We now briefly illustrate the process of learning for the Type 2 network. Consider
a data set consisting of fifty points (i.e., individuals or objects), each of which is
described along four attributes. Our objective then is to classify each one of the points
into one of two clusters. To this end, we thetrefore, create a net with four nodes in the
input layer and two nodes in the output layer. The SOM layer is built with eight nodes.
As shown in Figure 2, each node in the output layer is uniquely assigned to four nodes
in the SOM layer.

The first step in the process is to train the network. The initial weights (randomly
assigned) associated with the SOM layer are shown in Table 2. The system randomly
picks a data point from the data set, in this case the data point is x = (50.22, 50.55,
32.3, 31.44), which represents the four attributes (m = 4). The network then com-
putes the Euclidean distance D; = ((x; — w;1)? + (x2 = wp)? + (x3 — w3)? + (x4

= w,-4)2) 12 i=15 ...,12, foreach of the eight nodes in the SOM layer (Neuralware,

1991). Since we have a conscience mechanism, the node with the minimum adjusted
distance wins during learning, where the adjusted distance, D; = D; — B;. The bias,
B; = ¥(1/N — F;), where N is the number of processing elements in the SOM layer
(eight in this case) and F; is the frequency with which the processing element i has
historically won. Here the value of y was set at 2.0 for the first 1000 iterations and then
decreased to 1.5 for the next 1000 iterations and finally to 1.0 for the last 1000 iterations.
At the beginning of the learning process F; = 1/N, so B; = 0. Table 2 depicts the result
of the first data point passing through the network. Here the winner is node 12, and
since it is the first iteration, the distance and adjusted distance are the same. Also note
that since the system updates the nodes in the neighborhood of the winning processing
element, the weights of node 11 are also updated, while all the other processing ele-
ments retain their original weights.

Now for the second iteration, the frequencies are modified based on the following
relationship, for the winning node F; pew = Fioa + B (1.0 — F; 54) and for all the
other nodes in the layer, F; oy, = F; oia + (0.0 — F; 54). The value of B was decreased
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TABLE 2

Example - Weight Changes During Learning

tera- | 1IN Input Weights of SOM layer nodes
oon Value 1'g 6 7 8 9 10 |11 12
1 |o 08 |-06 [-02 |-03 | .03 |[.07 |-03 |.01
2 |o 1 |oo2 |02 |03 {03 |-00 |03 |08
2w 5 o 05 [-03 |03 |-05 |.03 |-08 [-01 |.05
4 |o 08 |-08 |05 |02 |-08 |-08 |08 |[.01
tera- |1 |5022 |-08 |-06 |-02 |-03 | .03 | .07 [1002 |1005
on 1 1> 5085 | .4 002 | .02 | .03 | .03 [-01 [1013 |1047
3 (323 |05 |-03 | 03 [-05 |03 |-08 | 645 | 65
4 |3144 |08 |-08 | 05 |02 |[-08 |-068 | 635 | 629
3Dist, | <mn | woeeee 84.26 | 84.38 | 84.31 |8433 |84.20 |84.33 |843 |84.25
=4AD S [ 84.26 | 84.38 [ 8431 |84.33 |84.29 |84.33 | 843 |84.25*
ltera- |1 |4274 |-08 |-06 [-02 [-03 | 03 |861 [1656 | 1659
on2 o Ta000 | 4 002 [ 02 | 03 [ .03 [979 |17.91 [17.94
3 |4226 | 05 |-03 | .03 |-05 | .03 |839 |1361 |1365
4 373 | o8 |-06 |05 | .02 |-06 |741 |1254 |12.49
3Dist | e | weeeee- 85.98 | 86.12 | 86.04 |86.07 |86.03 |86.08 | 69.44 |69.40
7 - J [ p— 85.95 | 86.09 | 86.02 |86.04 |86.01 | 86.06 | 69.41* | 69.58
ltera- |1 |30.00 |16.42 | 1560 [13.01 [17.32 |34.30 | 44.80 | 49.44 | 50.94
ggrc;o 2 |46.92 |29.00 |30.71 [3374 |38.56 |43.70 {4661 |47.30 |48.43
3 | 4371 |57.14 | 5560 | 4066 |44.35 |4081 |41.00 |41.07 |4227
4 {3390 |2967 |29.43 [2802 [30.89 |3166 |32.00 |33.31 |37.00
3Dist. | e | woreeee 3203 | 3117 [3032 [2757 | 796 | 7.93 [ 1079 |12.51
4D | — | —— [3210 [31.15 | 3023 |27.40 | 7.87*| 805 |10.94 |12.46

*Indicates minimugw distance, corresporhding SOM layer node wins
IN - Input node, <IW - Initial Weights, “Dist. - Distance, “AD - Adjusted distance

from .1 to .08 and then to .05 for each set of 1000 iterations. The winning node, in this
case node 12, gets its frequency increased while the others have their frequency re-
duced. Therefore, for all the processing elements other than 12, the distance has been
reduced by B; to obtain the resulting D;. The conscience mechanism, therefore, at-
tempts to adjust the distances so that those processing elements that are not winning
with an average frequency are given a better chance to win than those that are winning
at an above average frequency. _

To illustrate the changes in weights and distances, the results at 2000 iterations are
also shown in Table 2. Note that Nodes 5, 10, and 11 were winning at a higher than
average frequency, hence their adjusted distances are higher then the actual distances.
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Also note the substantial decrease in the distance measure with increased learning. For
these nets the training was done for 3000 iterations after which recall was performed.
During the recall phase the node with the minimum value of D; (unadjusted) wins in the
SOM layer and each of the 50 data points are assigned to a cluster by the network. With
this background in mind, the methodology to assess the relative classification accuracy
of the neural nets is described next.

Methodology

The data for this study were generated using Milligan’s (1985) procedure, which
has since been used for several comparisons of both hierarchical and non-hierarchical
clustering algorithms (e.g., Cooper & Milligan, 1988; Milligan, 1980; Milligan & Coo-
per, 1985). The data sets varied by the following design factors: the number of clusters
(4), the number of attributes (3), and the amount of error perturbation (3). The com-
parison of the Kohonen Learning method with the K-means clustering method was
conducted as a full-factorial experimental design. A total of one hundred and eight data
sets consisting of fifty points each were generated for the 4 X 3 X 3 design with three
replications of each cell. Each of these data sets with known cluster memberships was
then clustered using the various Kohonen neural networks as well as the K-means
algorithm.

Data Generqtion

The data were generated as truncated, multivariate normal distributions in Euclid-
ean space. The data sets were created to exhibit the commonly accepted features of
clusters, namely internal cohesion and external isolation (Cormack, 1971). Internal
cohesion was accomplished by requiring all data points to be within the boundaries of
the cluster on all dimensions. Boundaries were three standard deviations across for all
dimensions. External isolation was defined as having the first dimension be nonover-
lapping. Clusters were separated using f(S; + S,), where fis the separation factor and
S: and S, are the standard deviations of clusters 1 and 2, respectively, on the first
dimension (see Milligan, 1985). The value of f was randomly selected from a uniform
distribution bounded by .25 and .75. Other dimensions were permitted to overlap.
Thus, there is guaranteed cluster separation on the first dimension only in the no-error
condition.

In the low and high error conditions, the data point coordinates were then per-
turbed to distort the true distances between points. This error perturbation simulates
noise in the data, such as with data collection or measurement error. In the low error
condition, overlap did not occur on the first dimension but the separation was very
small. The high error condition did have some cluster overlap on the first dimension and
possibly on the other dimensions. New interpoint distances were calculated using
[Zi(A; — Ay — 8e;3)21"2, where A;; and A are the original coordinates values for
observation j and k on dimension i. The number of measures (i.e., attributes) used to
characterize each data set was varied so that all points in a data set were described by
a 4, 6, or 8 dimensional space. The number of true clusters in each data set was 2, 3,
4, or 5 with a roughly equal distribution of points in each cluster. The error term is
generated from a univariate normal distribution with a mean of zero and a standard
deviation determined by taking the average of the standard deviations on dimension i
for the two clusters containing points j and k. The multiplication factor, §, had values
of 1 or 2 which determined the low and high error levels, respectively (Milligan, 1985).
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Kohonen Networks

Three different Kohonen neural networks were used on the test data sets. The
output layers were constrained to the number of clusters known to be in the data, (i.e.,
2, 3, 4, or 5). Different networks were developed for each number of clusters and
number of attributes combination. Unsupervised learning was used since the objective
of clustering is to find the structure in the data. The true number of clusters was used
for the final output layer as a means of direct comparison with the K-means results. The
basis for determining misclassification was the true and known cluster membership of
the data point.

Normalization of the input data is required to prepare the Kohonen algorithm for
use on the nearest neighbor classification (NeuralWare, 1991). Normalization involves
mapping the input vector x onto a sphere, so ||x|| = 1. The output of a node before
competition occurs in the Kohonen layer is given by the dot product w - x in vector form
or |lw|| [|x]| cos (6). Since the implementation is designed to have |w|| = 1 and as a result
of normalizing the input vector x, the node needs to compute only the angle between the
weight and input vectors. The node having the smallest angle then wins the competi-
tion. The data were normalized using the multiplicative normalization, NormMult op-
tion provided in the package. It forces each vector to end on the unit sphere by
extending or shortening the input vectors.

Additionally, the effect of scaling the data before it was classified was also studied
using the Type 1 networks. The minmax routine available in the Neural Nets Profes-
sional II scaled the data between —1 and +1. For each attribute the lowest and highest
value in the data range are mapped to the lowest and highest values in the scale, while
the other data values are linearly mapped within the scale range.

The Type 1 networks, without scaling the data (NN1) or after scaling the data
(NN2), were run at 1000 iterations. The learning rate a was kept constant at 0.2 for
these two networks. The Type 2 networks (illustrated in Figure 2), were run at 3000
iterations (SOM3000). Here the parameters were varied with the number of iterations.
For the first 1000 iterations the learning rate a was kept at .2, the bias rate y was kept
at 2, and the frequency modification rate 8 was set at .1. For the next 1000 iterations the
parameters were reduced to .15, 1.5 and .08, and for the last 1000 iterations the values
were .1, 1.0 and .05 for a, y, and B respectively. Decreasing the values of the param-
eters as the network learns helps minimize the oscillation of weights.

K-Means Clustering

In nonhierarchical clustering, as in the neural networks under investigation, the
user specifies the number of clusters and the algorithm assigns points to the clusters
based on some criterion. For the purpose of comparison of the classification accuracy
of the neural nets described above, the clustering of the simulated data sets was also
conducted using the FASTCLUS procedure provided in the current release of SAS
(1990). Based, in part, on the leader algorithm (Hartigan, 1975) and the K-means
algorithm (MacQueen, 1967), FASTCLUS uses the Euclidean distances between ob-
servations to sort data into disjoint clusters. The FASTCLUS program was used as it
is widely available and is representative of the commonly available K-means proce-
dures.

As one of the procedure options in FASTCLUS, the cluster means can replace the
cluster seeds and the observations can thus be reassigned to clusters based on their
closeness to the new seeds. This process of seed replacement continues until there is
little or no change in cluster seeds from one iteration to the next.

Significa

Va

Ov
NL
Nu
_Eﬂ

En
of

En

The re
were exam
evaluated :
different te
yses of van
in the curr«
on the clus
since each
generated :
data sets, r
(four, six,
cations per

The F.
free data v
majority ol
FASTCLU
poorly clas
data sets.



~1ta sets. The °

he data, (i.e.,
clusters and
the objective
ers was used
s results. The
smbership of

algorithm for
tion involves
node before
1vector form
nd as a result
-between the
the competi-
ormMult op-
it sphere by

also studied
Nets Profes-
t and highest
scale, while

iing the data
.nt at 0.2 for
: run at 3000
of iterations.
e y was kept
terations the
1s the values
f the param-

tigation, the
. the clusters
on accuracy
ets was also
zase of SAS
he K-means
between ob-
as used as it
ieans proce-

1 replace the
' sed on their
intil there is

P. V. BALAKRISHNAN, MARTHA COOPER, VARGHESE S. JACOB, AND PHILLIP A. LEWIS 519

TABLE 3

Significance Levels by Cluster, Attributes and Error Level of Misclassification

Variable K-means NN1 NN2 SOM
Overall Model .244 .152 *.001 * 000
Number of Clusters .75 *.000 *.000 *.000
Number of Attributes 147 .989 .140 375
Error Level * 001 812 .297 .288
Error Level x Number .882 459 414 * 002
of Clusters
Error Level x Number 174 725 .358 *.048
of Attributes
Number of Clusters x .661 .892 .375 115
Number of Attributes
Error Level x Number 732 715 .110 .409
of Clusters x Number of
Attributes

* Significant at .05 level

Analysis

The results of the four clustering techniques employed on each of the 108 data sets
were examined in two ways. First, the overall performances of the techniques were
evaluated and compared in terms of the number of observations misclassified by the
different techniques. Second, the clustering results were submitted to a series of anal-
yses of variance (ANOV As) using the general linear models procedure (GLM) available
in the current edition of SAS (1990) to determine the effect of the data characteristics
on the clustering results. Repeated measures were not assumed in any of the analyses
since each algorithm was applied independently to the data sets, resulting in a uniquely
generated set of misclassifications. Thus, each of the analyses was performed on 108
data sets, representing a fully-crossed factorial design of 3 (no, low, or high error) x 3
(four, six, or eight attributes) X 4 (two, three, four, or five clusters), with three repli-
cations per cell. The overall results of these analyses are presented in Tables 3 and 4.

The FASTCLUS procedure recovered the correct cluster structure of the error-
free data with no more than five iterative recomputations of the cluster seeds. The
majority of the low- and high-error data sets were also correctly classified by the
FASTCLUS procedure. It is instructive to note that only a few of the data sets were
poorly classified which increased the average number of misclassifications across all
data sets.
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TABLE 4

Mean Misclassifications of Observations
by Error, Number of Clusters, and Number of Attributes

Variable Level K-Means NN1 NN2 | SOM3000
(in %) (in %) | (in %) Network
(in %)
Overall 1.23 9.12 8.86 12.21
Average
Error None 0 9.44 10.84 10.66
Low 22 8.06 6.84 12.72
High 3.78 9.88 8.94 13.56
Number of 2 1.48 2.00 2.60 2.96
Clusters 3 66 682 | 2.00 3.78
4 2.00 8.44 14.22 17.34
5 1.18 19.26 16.66 25.18
Number of 4 1.84 8.84 11.72 11.94
Altrbutes 1 ¢ 2.06 1172 | 8.12 13.78
8 12 8.78 6.78 11.22

The ANOVA model was not significant overall (p = .244) as reported in Table 3.
Only the main effect for the level of error in the data would have been significant at the
.01 level (N = 108, p < .001). The mean misclassification of observations was 0.0%,
0.22%, and 3.78% for the no-error, low-error, and high-error data sets, respectively.
Increasing the number of attributes improved cluster recovery, though not significantly
(p = .147). Previous research results that indicate that more, relevant attributes
should lead to better recovery (e.g., Milligan, 1980). The K-means method was gener-
ally insensitive to the number of clusters with only 1-2% of the points misclassified as
reported in Table 4.

The Type 1 NN1 network used NormMult normalization without scaling the data.
The 1000 iteration results are reported in Table 3 and 4. The overall model was not
significant. There would only have been a significant main effect for the number of true
clusters present in the data sets. As the number of true clusters increased, the networks
were increasingly unable to recover the appropriate cluster structure with misclassifi-
cations increasing from 2.00% to 19.26%.

The Type 1 NN2 uses the same normalization procedure as NN1 but scales the
data between —1 and +1. When the results were analyzed, the model for 1000 iterations
was significant at the p < .001. Only the main effect for the number of clusters was
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found to be significant at p = .0001. Whereas the NN1 data produced an ascending line
of misclassifications as the number of clusters increased, the scaled data in NN2 pro-
duced a stair-step pattern (see Table 4). There was a sharp break between three and
four clusters in the NN2 data sets. NN2 data had better recovery for the three cluster
solutions and more misclassifications for the four cluster data compared with NN1
results.

The Type 2 network illustrated in Figure 2 was also tested. Results were similar to
or slightly less positive than those for the basic Kohonen networks. The mean percent-
age of misclassification of observations for the Self-Organizing Map with conscience
(SOM3000) network are presented in Table 4. The level of misclassification for the
SOM3000 was similar to the two basic Kohonen networks examined for the number of
clusters and the number of attributes. The stair step pattern of NN2 was again exhibited
across the number of clusters. Some researchers have pointed out the potential prob-
lems with SOMs (Huntsberger & Ajjimarangee, 1990) and the results reported in
Murtagh (1991b) suggest that the SOM may not be appropriate for some clustering
problems. However, it was expected in this case that the use of the conscience mech-
anism would improve the clustering results, especially as the data sets had more or less
an equal number of points per cluster. In this regard, Balakrishnan, et al. (1992) for
instance had found that incorporating a conscience mechanism tended to result in
clusters of relatively equal size.

The analysis of the SOM3000 clustering results produced one main effect for the
number of clusters (p = .0001). Two significant two-way interactions occurred be-
tween the level of error and the number of attributes (N = 108, p = .048) and for the
level of error and the number of true clusters (N = 108, p = .002).

Conclusions and Directions for Future Research

The purpose of the study was to compare a class of neural networks and a K-means
algorithm on known data sets with known cluster structure. The results of the study are
summarized below:

1. The K-means method performed well on the experimental data sets. Overall,
the K-means method, as represented in FASTCLUS, demonstrated the best
performance, compared with the neural networks studied. Misclassification of
observations in the data sets for the K-means method was between zero and two
percent, except for the high error condition.

2. Error in the data consistently affected the performance of the K-means method.
Solution quality was excellent for the error-free data. However, as error was
added to the data, the solution quality did deteriorate. This pattern, it is impor-
tant to note, did not hold for the neural networks. That is, the neural networks
investigated were less sensitive to the kind of error under investigation, al-
though their average misclassification rate was higher.

3. The number of clusters in the data consistently affected cluster recovery in the
neural networks unlike for the K-means. The Kohonen algorithm had a ten-
dency to overcluster as the number of clusters increased. This tendency was
more pronounced for the scaled data (NN2). A close inspection of the classifi-
cation outputs indicates that for some data sets, two true clusters were com-
bined by the neural networks into one large cluster.

4. A suggested improvement to mitigate the above problem of over clustering (i.c.,
collapsing a number of different true clusters into one larger cluster) on the
Kohonen model is to give it a ‘‘conscience’’. The use of such a conscience
mechanism is to ensure that any one node does not take an overly large pro-
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portion of the data points. In other cases, this addition was found to have
improved model results. However, in the present study, the conscience mech-
anism did not improve resuits.

5. Scaling the data for the neural networks changed the pattern of results but did
not substantially improve the results.

6. The clustering literature suggests that cluster recovery increases with an in-
crease in the number of attributes (Milligan & Cooper, 1987). The rationale
being that the added dimensions gives greater opportunity for triangulating on
the correct solution. However, the number of attributes generally was not sig-
nificant when compared with the number of clusters and the error levels in this
experiment. The K-means results are in the anticipated direction with fewer
misclassifications as the number of attributes increased, but the neural networks
do not exhibit this same pattern.

7. The K-means algorithm converged in relatively few iterations, (i.e., in five or
fewer).

Limitations

The experimental data employed in the study were created to be representative of
a number of different conditions using a data generation methodology well-accepted in
the clustering literature. However, the analyses conducted on the data sets have at least
two limitations. First, the number of data points may be considered relatively small
when compared to those commonly used for neural networks. Also, the FASTCLUS
procedure was designed to be used with data sets having more than 100 observations.
According to the SAS User’s Guide, FASTCLUS solutions for smaller data sets are
vulnerable to order effects. However, this was not found to be a problem for the
error-free data in this study. Second, conducting the analysis on error-free data and
knowing the correct number of clusters in the data may have favorably biased the
results as the most serious problem in the K-means approach is the selection of initial
cluster seeds (see Milligan, 1980). Using the correct number of clusters and error-free
data significantly reduced the problem of selecting the seeds. Analyses conducted on
data with skewed distributions or other forms of error would likely result in a lower hit
rate. Despite these limitations, the K-means algorithm performed well and is widely
available to researchers.

Although the Neural Networks chosen for this study did not perform well, several
contributing factors should be considered that would provide the basis for future re-
search in the area. (We are indebted to an anonymous referee for motivating the points
discussed here.) It should first be noted that given the unsupervised learning approach
used in the basic Kohonen and SOM networks, these networks are a natural starting
point to explore for use in clustering. However, at the same time it should be kept in
mind that these networks were originally designed for vector quantization and topolo-
gy-preserving mappings, respectively. Consequently, Kangas, Kohonen, and Laak-
sonen (1990) warn that these networks are susceptible to misclassification problems
when they are required to separate the signals into categories. They suggest that for
pattern recognition or other decision processes it is possible to significantly improve
recognition accuracy by ‘‘fine tuning’’. Unfortunately, such a ‘‘fine tuning’’ process
often requires additional information. These may take the form of more data points that
may not often be available in many situations involving data collected from behavioral
sciences experiments. More importantly, the information needed to minimize misclas-
sification involves employing multiple codebook (i.e., weight) vectors to represent each
cluster. These multiple vectors, they suggest, that are needed are the vectors defining
the boundaries of the clusters rather than the typical centroids. Unfortunately, in the
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context of applied research, the very boundaries of the clusters are typically not known
and have to be determined.

Another limitation of the study is the structure of the data that was used. Since all
of the data used for the study consisted of hyperellipsoidal clusters, it would tend to
favor the K-Means approach. On the other hand data from cluster patterns that are
nonhyperellipsoidal may favor NNs as opposed to K-means. However, the focus of this
study on hyperellipsoidal clusters is motivated by the belief that in the behavioral and
social sciences the definition of cluster has come to be closely associated with the
hyperellipsoidal pattern.

Additionally, it must be noted that the Kohonen learning algorithm does not de-
terministically converge, hence as long as the learning rate (a) is positive the weights
will be updated leading to weight oscillation. Thus, there is no guarantee that when
learning is terminated that the weight vectors represent the true centroid of the cluster.
One way to get around this is to gradually decrease the value of «a to zero as the learning
progresses to freeze the centroids. In this study the learning rate was kept constant for
the Type 1 networks, while it was decreased over a number of iterations in the Type 2
networks.

Future Directions

This paper has begun to examine the interrelationships between one kind of neural
network and a traditional kind of cluster analysis in line with the suggestions of Bezdek
(1991). Future work should include:

1. Additional comparisons of neural networks with traditional methods across a
wider variety of settings, methods, and data. For example, the results presented
here may not be generalizable to other types of error, such as outliers or random
noise dimensions.

2. Different network construction. The number of nodes in the hidden layers and
the number of hidden layers may affect results.

3. One difficulty with the neural networks was the merging of two or more true
clusters in the final solution. Once a large cluster is obtained, it would be
instructive to subject these points to a separate network analysis to determine
if they can be further broken down correctly into smaller-sized clusters.

4. Other neural networks that are designed to perform clustering kinds of analyses
should be analyzed. »

5. This paper has addressed one of these characteristics of model validation: per-
formance validation. The other characteristics, such as complexity, conver-
gence, stability, and robustness should be addressed in future research. In
addition, comparing the various techniques on real data, such as in Balakrish-
nan, et al. (1992), should be continued.
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