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a b s t r a c t

Gupta and Livne (1988)modified Nash’s (1950) original bargaining problem through the introduction of a
reference point restricted to lie in the bargaining set. Additionally, they characterized a solution concept
for this augmented bargaining problem. We propose and axiomatically characterize a new solution
concept for bargaining problems with a reference point: the Tempered Aspirations solution. In Kalai and
Smorodinsky (1975), aspirations are given by the so called ideal or utopia point. In our setting, however,
the salience of the reference point mutes or tempers the negotiators’ aspirations. Thus, our solution
is defined to be the maximal feasible point on the line segment joining the modified aspirations and
disagreement vectors. The Tempered Aspirations solution can be understood as a ‘‘dual’’ version of the
Gupta–Livne solution or, alternatively, as a version of Chun and Thomson’s (1992) Proportional solution
in which the claims point is endogenous. We also conduct an extensive axiomatic analysis comparing the
Gupta–Livne to our Tempered Aspirations solution.

Published by Elsevier B.V.
1. Introduction

In Nash’s (1950) bargaining framework, the outcome of a
negotiation is a function of the bargaining set, S, and the
disagreement point d ∈ S. The first is the set of achievable
utility profiles whilst the second represents the utilities the parties
receive in the event a bargain is not struck. It has been noted by a
number of writers that other aspects of the environment influence
the outcome of the bargain; for example, the precedent set by
a similar bargain from an earlier period. The practice of pattern
bargaining employed by some trade unions and negotiations in
modified rebuy contexts in Business to Business settings are other
examples. The agreement struck with one employer or business
in the industry becomes the reference point for agreements with
other employers. To accommodate this, Gupta and Livne (1988)
enrichedNash’s framework through the introduction of a reference
point r ∈ S.

In their work, r is interpreted to be an intermediate agreement
which facilitates conflict resolution. They also propose and
characterize a solution to the bargaining problem that depends on
S, d and r . Their solution chooses the maximal point in S along
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the segment joining r and the aspirations of agents measured
from the disagreement point d. We propose a new and different
solution concept: the Tempered Aspirations solution. We suggest an
outcome that is dictated by the aspirations bargainers draw from
the reference, not the disagreement point. Specifically, bargainer
i aspires to obtain ri plus anything left over after satisfying other
bargainers’ claims. In our solution, the reference point assists
in the formation of the players’ aspirations. The conflict point
no doubt defines the ideal (or utopia) point that each party
would like to attain. The salience of the reference point, however,
mutes or tempers the negotiators’ aspirations. Having defined
every bargainer’s aspiration, the Tempered Aspirations solution is
defined to be the maximal feasible point on the line joining the
aspirations and disagreement vectors.

The structure of the paper is as follows. In Section 2, we
describe the model and our new solution concept. In Section 3,
we show that the proposed Tempered Aspirations solution can
be characterized using Weak Pareto Optimality, Symmetry, Scale
Invariance, Restricted Monotonicity with respect to the Reference
Point, Irrelevance of Trivial Reference Points, and Continuity
with Respect to the Bargaining Set. The first three axioms are
adaptations of the typical requirements found in Nash (1950). The
fourth axiom is a natural variation of Roth’s (1979) well-known
restricted monotonicity. The fifth axiom requires the reference
point to change bargainers’ expectations for it not to be trivial. The
last axiom addresses technical issues. In Section 4, we study how
our proposed solution concept behaves with respect to a number
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of different properties examined in the literature. In Section 5, we
compare our TemperedAspirations solution to itsmain alternative,
the solution concept proposed by Gupta and Livne (1988). In this
process, we also reexamine the latter solution concept in more
detail. We conclude in the final section by proposing directions for
future research.

2. The model

Let B be an infinite set of potential bargainers and let N be
the family of all non-empty finite subsets of B. Fix N ∈ N . Let
0 = (0, . . . , 0) ∈ RN and 1 = (1, . . . , 1) ∈ RN . For every
M,N ∈ N such that M ⊆ N , and every x ∈ RN , let xM denote
the projection of x onto RM . If N has more than one member, for
every x ∈ RN and every i ∈ N , define x−i = xN\{i} and let the
unit vector ei = (1, 0−i) ∈ RN . Also, if t > 0, let x

t abbreviate
1
t x. Vector inequalities are treated as follows. Given x, y ∈ RN we
write x ≥ y if xi ≥ yi ∀i ∈ N , x > y if x ≥ y but x ≠ y, and x ≫ y
if xi > yi ∀i ∈ N . Let Y ⊆ RN . Y is said to be convex if for every
y1, y2 ∈ Y and every λ ∈ [0, 1], λy1 + (1 − λ)y2 ∈ Y . Y is called
comprehensive if for every x ∈ RN the fact that there is a y ∈ Y
such that y ≥ x, implies x ∈ Y . The convex and comprehensive hull
of Y , cch(Y ), is the smallest of all convex and comprehensive sets
containing Y .

A bargaining set forN is any non-empty, convex, comprehensive
and closed set S ⊆ RN that is bounded above in the sense that there
is a p ∈ RN

++
and aw ∈ R such that

∑
i∈N pixi ≤ w for all x ∈ S. The

bargaining set represents all the utility vectors that can be achieved
by the players in N , bargaining among themselves.

Convexity presumes that randomization over the outcomes is
possible. The comprehensiveness condition reflects the possibility
of free disposal of utility. For every bargaining set S, define its
Pareto-optimal set as PO(S) = {y ∈ S | x > y implies x ∉ S}.
Similarly, itsweakly Pareto-optimal set is defined asWPO(S) = {y ∈

S | x ≫ y implies x ∉ S}.
A bargaining problem forN (Nash, 1950) is a pair (S, d) such that

S is a bargaining set forN , d ∈ S, and there exists an x ∈ S satisfying
x ≫ d. The point d is called the disagreement point and represents
the utility obtained by the bargainers if no agreement is reached.
For every bargaining set S and every x ∈ S, let the aspirations vector
a(S, x) be defined by ai(S, x) = max{t ∈ R | (t, x−i) ∈ S} for
every i ∈ N . Notice that the aspirations vector is well defined
as S is closed and bounded above. The ideal point of the problem
(S, d) represents bargainers’ expectations before coming to the
negotiation table and is defined by a(S, d). Denote the family of
all bargaining problems for N by ΣN

0 . A solution concept on ΣN
0

is a function ψ that associates with each (S, d) ∈ ΣN
0 a unique

outcomeψ(S, d) ∈ S. For example, the Kalai–Smorodinsky solution
(Kalai and Smorodinsky, 1975) is defined for every (S, d) ∈ ΣN

0 as
KS(S, d) = λ∗a(S, d) + (1 − λ∗)d where λ∗

= max{λ ∈ [0, 1] |

λa(S, d)+ (1 − λ)d ∈ S}.
A bargaining problem with a reference point for N (Gupta and

Livne, 1988) is a triple (S, d, r)where (S, d) is a bargaining problem
for N and the reference point r ∈ S \ WPO(S) satisfies r ≥ d. We
label the family of all bargaining problems with a reference point
forN byΣN . A solution concept onΣN is a functionφ that associates
with each triple (S, d, r) ∈ ΣN a unique outcome φ(S, d, r) ∈ S.

We now define our proposed solution concept and its main
alternative in the literature.

Definition 2.1. The Tempered Aspirations solution is defined for
every (S, d, r) ∈ ΣN as

TA(S, d, r) = λ∗a(S, r)+ (1 − λ∗)d

where λ∗
= max{λ ∈ [0, 1] | λa(S, r)+ (1 − λ)d ∈ S}.
If a bargaining problem is translated so that the disagreement
point is at the origin, our proposed solution is the only point along
the frontier of S proportional to the aspirations vector a(S, r).

Definition 2.2. The Gupta–Livne solution (Gupta and Livne, 1988)
is defined for every (S, d, r) ∈ ΣN as

GL(S, d, r) = λ∗a(S, d)+ (1 − λ∗)r

where λ∗
= max{λ ∈ [0, 1] | λa(S, d)+ (1 − λ)r ∈ S}.

The Gupta–Livne solution is ‘‘dual’’ to the Tempered Aspirations
solution in the sense that it exchanges the roles played by the
reference anddisagreement points. In theGupta–Livne framework,
the disagreement point d has no role to play as a threat in the
bargain. It serves only to form the aspirations of the players
through the construction of the ideal aspiration point. Instead, we
use the reference point r to set bargainers’ aspirations, and d as
a reference vector from which proportional payoffs are measured.
Both solution concepts are illustrated in Fig. 1.

3. Characterization of the Tempered Aspirations solution

3.1. The axioms

The first three axioms, due to Nash (1950), are standard in the
bargaining literature. They have been modified to account for the
presence of a reference point. We assume for the moment that
N ∈ N is fixed. In what follows, the axioms are written for a
generic solution φ onΣN .
Weak Pareto-Optimality (WPO): For every (S, d, r) ∈ ΣN , φ(S, d, r)
∈ WPO(S).

Let Π(N) be the set of permutations of the set N . For every
π ∈ Π(N) and every x ∈ RN , define π(x) ∈ RN as the vector such
that for every i ∈ N , (π(x))π(i) = xi. For every X ⊆ RN define
π(X) = {π(x) | x ∈ X}. A problem (S, d, r) ∈ ΣN is said to
be symmetric if, for every π ∈ Π(N), π(S) = S, π(d) = d, and
π(r) = r .
Symmetry (SYM): For every (S, d, r) ∈ ΣN , if (S, d, r) is symmetric
then, for every i, j ∈ N , φi(S, d, r) = φj(S, d, r).

Let L be the family of vectors of functions L = (Li)i∈N such that
for every i ∈ N , there exist mi ∈ R++ and bi ∈ R satisfying, for
every t ∈ R, Li(t) = mit + bi.
Scale Invariance (SC.INV): For every (S, d, r) ∈ ΣN and every L ∈ L,
φ(L(S), L(d), L(r)) = L(φ(S, d, r)).

The following axiom is the logical counterpart to restricted
monotonicity when a reference point is introduced. In its original
form, the axiom requires that expanding the bargaining set
without altering the bargainers’ ideal point must not hurt any
party’s payoff. We argue that the introduction of a reference
point necessarily changes expectations. Therefore, in our version of
monotonicity, we substitute the ideal point, a(S, d), by the vector
of aspirations, a(S, r).
r-Restricted S-Monotonicity (r-REST.S-MON): For every (S, d, r) and
(S ′, d′, r ′) ∈ ΣN , (d, r) = (d′, r ′), S ⊆ S ′ and a(S, r) = a(S ′, r ′),
imply φ(S, d, r) ≤ φ(S ′, d′, r ′).

The following axiom states that whenever introducing a
reference point does not change bargainers’ initial aspirations,
given by a(S, d), the reference point might as well be replaced by
the disagreement point.
Irrelevance of Trivial Reference Points (ITR): For every (S, d, r) ∈ ΣN ,
a(S, r) = a(S, d) implies φ(S, d, r) = φ(S, d, d).

In what follows, convergence of sets is evaluated using the
Hausdorff topology.
S-Continuity (S-CONT ): For every sequence {(Sk, d, r)}k ⊂ ΣN such
that limk→∞ Sk = S and (S, d, r) ∈ ΣN , limk→∞ φ(Sk, d, r) =

φ(S, d, r).
We now show that the axioms above uniquely characterize the

Tempered Aspirations solution.
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Fig. 1. Solution concepts for bargaining problems with a reference point.
Proposition 3.1. A solutionφ onΣN satisfiesWPO, SYM, SC.INV, ITR,
r-REST.S-MON, and S-CONT if and only if, for every (S, d, r) ∈ ΣN ,
φ(S, d, r) = TA(S, d, r).

Proof. It is easy to verify that the Tempered Aspirations solution
satisfies the six axioms. Conversely, let φ be any solution satisfying
them. Choose any (S, d, r) ∈ ΣN . Thanks to SC.INV, there is no
generality lost by assuming that d = 0 and a(S, r) = 1. Notice
then that, for every i, j ∈ N , TAi(S, d, r) = TAj(S, d, r). Define ř =

min{ri | i ∈ N} and V = {ř1 + (1 − ř)ei | i ∈ N}. Define next S ′′
=

cch(V ∪{TA(S, d, r)}). ByWPO and SYM,φ(S ′′, d, ř1) = TA(S, d, r).
Now define S ′

= {x ∈ S | x ≤ a(S, r) = 1}. If TA(S, d, r) ∈

PO(S ′), as S ′′
⊆ S ′ and a(S ′′, ř1) = a(S ′, ř1), use r-REST.S-MON to

conclude that φ(S ′′, d, ř1) = φ(S ′, d, ř1) = TA(S, d, r). Otherwise,
if TA(S, d, r) ∈ WPO(S ′) \ PO(S ′), approximate S ′ with sets S ′

k
such that, for every k ∈ N, S ′′

⊆ S ′

k, (S
′

k, d, ř1) ∈ ΣN , and
TA(S, d, r) ∈ PO(S ′

k). Use r-REST.S-MON to see that for every k ≥ 1,
φ(S ′

k, d, ř1) = TA(S, d, r). Hence, φ(S ′, d, ř1) = TA(S, d, r) by
S-CONT. Observe that by definition of S ′, a(S ′, r) = a(S ′, d) =

a(S ′, ř1) = 1. Thus, ITR implies φ(S ′, d, r) = φ(S ′, d, d) =

φ(S ′, d, ř1) = TA(S, d, r). Finally, invoke again r-REST.S-MON and
a continuity argument if necessary to yieldφ(S, d, r) = TA(S, d, r),
as desired. �

Notice that, if N has only two bargainers, the Tempered
Aspirations solution is Pareto-optimal and S-CONT is not needed
to obtain the result.

3.2. Independence of the axioms

A solution that assigns the disagreement point to every
(S, d, r) ∈ ΣN shows that WPO is logically independent from
the remaining axioms. Given a fixed k ∈ N , all axioms except
SYM are satisfied by the k-dictatorial solution, defined for every
(S, d, r) ∈ ΣN as (ak(S, d), d−k). The Egalitarian solution (Kalai,
1977), defined for every (S, d, r) ∈ ΣN as d + λ∗

· 1 where λ∗
=

max{λ ∈ R+ | d+λ·1 ∈ S}, shows the independence of SC.INV. The
Nash bargaining solution (Nash, 1950), defined for every (S, d, r) ∈

ΣN as argmaxx∈S
∏

i∈N(xi − di), satisfies all axioms except
r-REST.S-MON. The solution proposed by Herrero and Villar
(2010), defined for every (S, d, r) ∈ ΣN as λ∗a(S, r) + (1 − λ∗)r ,
where λ∗

= max{λ ∈ [0, 1] | λa(S, r) + (1 − λ)r ∈ S}, shows
that ITR is not implied by the other five axioms. The independence
of S-CONT is still an open question.

4. Other properties of the Tempered Aspirations solution

4.1. Monotonicity properties

The following properties describe how the Tempered Aspira-
tions solution is affected if one of the bargainers improves her
position, be it with respect to the disagreement or the reference
point. Up to now, such properties have only been defined for stan-
dard bargaining problems (Thomson, 1987) and bargaining prob-
lems with claims (Bossert, 1992, 1993). We adapt these axioms to
bargaining problems with a reference point.

The first property states that improving bargainer i’s disagree-
ment payoff (di) should not hurt her. The second property states
that the remaining bargainers should not benefit from such an im-
provement. More formally:
d-Monotonicity (d-MON): For every (S, d, r) ∈ ΣN , every i ∈ N ,
and every t ∈ R++, (S, d + tei, r) ∈ ΣN implies φi(S, d + tei, r) ≥

φi(S, d, r).
Strong d-Monotonicity (ST.d-MON): For every (S, d, r) ∈ ΣN , every
i ∈ N , and every t ∈ R++, (S, d + tei, r) ∈ ΣN implies, for every
j ∈ N \ {i}, φj(S, d + tei, r) ≤ φj(S, d, r).

The reason for thenames of these properties is that a continuous
and weakly Pareto-optimal solution concept satisfying ST.d-MON
must also comply with d-MON. If, additionally, n := |N| =

2, the two properties are equivalent (Thomson, 1987). Thomson
also shows that the Nash and Kalai–Smorodinsky solutions are
d-monotonic, but not strongly d-monotonic if n ≥ 3.We show that
the Tempered Aspirations solution satisfies both properties.

Proposition 4.1. The Tempered Aspirations solution satisfies d-MON
and ST.d-MON.

Proof. The Tempered Aspirations solution satisfies WPO and
S-CONT, so it is enough to show the second part. Let (S, d, r) ∈ ΣN ,
i ∈ N , and t ∈ R++ be such that (S, d + tei, r) ∈ ΣN . Without
loss of generality, assume d = 0. Let λ,µ ∈ (0, 1] be such that
TA(S, 0, r) = λa(S, r) and TA(S, tei, r) = µa(S, r)+ (1−µ)tei. For
a contradiction, suppose there is a bargainer k ∈ N \ {i} such that
λak(S, r) < µak(S, r), so λ < µ. But then, for every j ∈ N we have
TAj(S, 0, r) < TAj(S, tei, r), contradicting the fact that TA(S, 0, r) is
weakly Pareto-optimal. �

Analogously, we define properties that study how bargainers
are affected once the reference point is altered.
r-Monotonicity (r-MON): For every (S, d, r) ∈ ΣN , every i ∈ N ,
and every t ∈ R++, (S, d, r + tei) ∈ ΣN implies φi(S, d, r) ≥

φi(S, d, r + tei).
Strong r-Monotonicity (ST.r-MON): For every (S, d, r) ∈ ΣN , every
i ∈ N , and every t ∈ R++, (S, d, r + tei) ∈ ΣN implies, for every
j ∈ N \ {i}, φj(S, d, r + tei) ≤ φj(S, d, r).

Only the first property is satisfied by the Tempered Aspirations
solution.

Proposition 4.2. The Tempered Aspirations solution satisfies r-MON.

Proof. Let (S, d, r) ∈ ΣN , i ∈ N , and t ∈ R++ be such that
(S, d, r + tei) ∈ ΣN . Without loss of generality, let d = 0. Let
λ,µ ∈ (0, 1] be such that TA(S, 0, r) = λa(S, r) and TA(S, 0, r +

tei) = µa(S, r + tei). By contradiction, suppose that λai(S, r) >
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µai(S, r + tei). As ai(S, r) = ai(S, r + tei) and, for every j ∈ N \ {i},
aj(S, r) ≥ aj(S, r+tei), thenλ > µ and, for every j ∈ N ,λaj(S, r) >
µaj(S, r + tei). This contradicts the fact that TA(S, 0, r + tei) is
weakly Pareto-optimal. �

Proposition 4.2 immediately implies that the Tempered Aspi-
rations solution is also strongly r-monotonic if n = 2. We adapt
an example by Thomson (1987) to show that this fact is not true if
n > 2.

Example 4.3. The Tempered Aspirations solution does not satisfy
ST.r-MON if n ≥ 3. If S = cch({(0, 2, 2), (2, 1, 2)}), d = r =

(0, 0, 0), and r ′
= (1, 0, 0), then TA(S, d, r) = (1 1

3 , 1
1
3 , 1

1
3 )

and TA(S, d, r ′) = (1 3
5 , 1

1
5 , 1

3
5 ). The third bargainer is better off

after the first coordinate of r was increased by one, contradicting
ST.r-MON.

4.2. Uncertainty properties

Bargainers might be uncertain about tomorrow’s value of any
of the elements of the triple (S, d, r). The next family of properties
examines whether our solution concept makes it desirable to
write contingent contracts today, compared to waiting until such
uncertainty is resolved. This type of analysis has previously been
performed with respect to the bargaining set (e.g. Perles and
Maschler (1981), Myerson (1981) and Bossert et al. (1996)) and the
disagreement point (e.g. Chun and Thomson (1990a,b,c)). To the
best of our knowledge, our work is the first one to study uncertain
reference points.

The results in this subsection build on the similarities between
the Tempered Aspirations solution and Chun and Thomson’s
(1992) Proportional solution. This last concept is defined for a
model in which the ‘‘reference’’ point is required to lie outside the
bargaining set.

A bargaining problem with claims for N is a triple (S, d, c)where
(S, d) is a bargaining problem for N and the claims point c ∈ RN

satisfies c ≥ d, c ∉ S and, for every i ∈ N , ci ≤ max{xi |

x ∈ S} whenever this maximum exists. We label the family
of all bargaining problems with claims for N by ΣN

C . Define the
Proportional solution for every (S, d, c) ∈ ΣN

C as P(S, d, c) = λ∗c +

(1−λ∗)dwhere λ∗
= max{λ ∈ [0, 1] | λc + (1−λ)d ∈ S}. Notice

that when the aspirations vector a(S, r) plays the role of the claims
point, the Tempered Aspirations and the Proportional solutions
coincide. That is, for every (S, d, r) ∈ ΣN , (S, d, a(S, r)) ∈ ΣN

C
and TA(S, d, r) = P(S, d, a(S, r)).

Chun and Thomson (1992) show that the Proportional solution
is concave with respect to the bargaining set, i.e., if problems (S, d, c)
and (S ′, d, c) will respectively occur with probabilities α and
1 − α, then the outcome of committing to a solution today,
P(αS + (1 − α)S ′, d, c), dominates the expected outcome of
solving the problem tomorrow, αP(S, d, c) + (1 − α)P(S ′, d, c).
Hence, restricting S ′ to leave the aspirations vector unchanged
leads to another property satisfied by the Tempered Aspirations
solution. Notice this restriction was also used in the definition of
r-REST.S-MON.
r-Restricted S-Concavity (r-REST.S-CAV ): For every (S, d, r),
(S ′, d′, r ′) ∈ ΣN and every α ∈ [0, 1], (d, r) = (d′, r ′) and
a(S, r) = a(S ′, r ′) imply φ(αS + (1 − α)S ′, d, r) ≥ αφ(S, d, r) +

(1 − α)φ(S ′, d′, r ′).
Regarding uncertainty with respect to d, Chun and Thomson

(1992) show that the proportional solution is quasi-concave with
respect to the disagreement point. As modifying the disagreement
point does not alter the aspirations vector, the Tempered
Aspirations solution also satisfies the corresponding property.
d-Quasi-Concavity (d-QCAV ): For every (S, d, r), (S ′, d′, r ′) ∈ ΣN ,
every i ∈ N , and every α ∈ [0, 1], (S, r) = (S ′, r ′) implies
φi(S, αd + (1 − α)d′, r) ≥ min{φi(S, d, r), φi(S ′, d′, r ′)}.
We now define an analogous property, applicable when the
reference point is uncertain.
r-Quasi-Concavity (r-QCAV ): For every (S, d, r), (S ′, d′, r ′) ∈ ΣN ,
every i ∈ N , and every α ∈ [0, 1], (S, d) = (S ′, d′) implies
φi(S, d, αr + (1 − α)r ′) ≥ min{φi(S, d, r), φi(S ′, d′, r ′)}.

Example 4.4. The Tempered Aspirations solution does not satisfy
r-QCAV. For example, if S = cch({(8, 0), (2, 6)}), d = (0, 0),
r = (0, 1), r ′

= (4, 3), and α =
1
2 , then TA(S, d, r) = (4 4

13 , 3
9
13 ),

TA(S, d, r ′) = (4 4
9 , 3

5
9 ), and TA(S, d, 1

2 r+
1
2 r

′) = (4, 4). Bargaining
with respect to 1

2 r +
1
2 r

′ leaves the first bargainer worse off than
at r and r ′.

4.3. Variable population properties

Here we examine how TA(S, d, r) changes when a subset of
bargainers leaves the table. The cases to consider depend on the
payoffs obtained by thosewho quit. If they leave and just take their
disagreement payoff, then it is expected that the remaining players
remain at least as well as before. Solution concepts satisfying this
requirement are said to be population monotonic (Thomson, 1983).
We also define a similar property for the case in which those who
leave take with them their reference payoff. The formal definitions
follow.

Up to now, the set of bargainers N has remained fixed. In order
toworkwith varying numbers of bargainers,weneed the following
definitions. Let Σ =


N∈N Σ

N . A solution on Σ is a function φ
that associates with each triple (S, d, r) ∈ Σ a unique outcome
φ(S, d, r) ∈ S. The remaining axioms in this subsection arewritten
for a generic solution φ onΣ .
Population d-Monotonicity (POP.d-MON): For everyM,N ∈ N such
that M ⊆ N , every (S ′, d′, r ′) ∈ ΣN , and every (S, d, r) ∈ ΣM ,
(d, r) = (d′

M , r
′

M) and S = {x ∈ RM
| (x, d′

N\M) ∈ S ′
} imply

φM(S ′, d′, r ′) ≤ φ(S, d, r).
Population r-Monotonicity (POP.r-MON): For everyM,N ∈ N such
that M ⊆ N , every (S ′, d′, r ′) ∈ ΣN , and every (S, d, r) ∈ ΣM ,
(d, r) = (d′

M , r
′

M) and S = {x ∈ RM
| (x, r ′

N\M) ∈ S ′
} imply

φM(S ′, d′, r ′) ≤ φ(S, d, r).
The next example and proposition show that while our solution

does not satisfy POP.d-MON, it does comply with POP.r-MON.

Example 4.5. Let S ′
= cch({(4, 0, 8), (0, 0, 12), (0, 4, 8)}), d′

=

(0, 0, 0) and r ′
= ( 12 , 2, 8

1
2 ). Then a(S ′, r ′) = (1 1

2 , 3, 9
1
2 ) and

TA(S ′, d′, r ′) = (1 2
7 , 2

4
7 , 8

1
7 ). If the third bargainer leaves the

negotiations empty-handed, the new bargaining set is S =

cch({(4, 0), (0, 4)}) and the projections of d′ and r ′ are d = (0, 0)
and r = ( 12 , 2). Then a(S, r) = (2, 3 1

2 ) and TA(S, d, r) =

(1 5
11 , 2

6
11 ), making the second bargainer worse off. Therefore, the

Tempered Aspirations solution is not population d-monotonic.

Proposition 4.6. The Tempered Aspirations solution satisfies POP.
r-MON.

Proof. Let M,N ∈ N be such that M ⊆ N , (S ′, d′, r ′) ∈ ΣN and
(S, d, r) ∈ ΣM be such that (d, r) = (d′

M , r
′

M), and S = {x ∈ RM
|

(x, r ′

N\M) ∈ S ′
}. Notice that, for every i ∈ M , max{t | (t, r ′

N\{i}) ∈

S ′
} = max{t | (t, rM\{i}) ∈ S}, so aM(S ′, r ′) = a(S, r). Let l ⊂ RM

denote the line determined by d and a(S, r). Then TAM(S ′, d′, r ′) ∈

l because collinearity is preserved when projecting on RM . As
TA(S, d, r) also lies along l and is weakly Pareto-optimal, it must
be the case that TAM(S ′, d′, r ′) ≤ TA(S, d, r). �

Another possibility is that bargainers leave taking with them
their share according to a solution concept φ. Then, it is
expected that the remaining bargainers are indifferent between
renegotiating among themselves and just accepting their previous
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φ-share. If so, φ is said to be consistent. This condition was
originally proposed by Lensberg (1988), calling it multilateral
stability.
Consistency (CONS): For every M,N ∈ N such that M ⊆ N , every
(S ′, d′, r ′) ∈ ΣN , and every (S, d, r) ∈ ΣM , (d, r) = (d′

M , r
′

M) and
S = {x ∈ RM

| (x, φN\M(S ′, d′, r ′)) ∈ S ′
} imply φM(S ′, d′, r ′) =

φ(S, d, r).
The Tempered Aspirations solution is not consistent, as the

following example shows.

Example 4.7. Let S ′ be defined as in Example 4.5 and d′
= r ′

=

(0, 0, 0). Then a(S ′, r ′) = (4, 4, 12) and TA(S ′, d′, r ′) = (2, 2, 6). If
the first bargainer leaves the negotiations with a payoff of 2 units,
then the new bargaining set is S = cch({(2, 8), (0, 10)}) and the
projections of d′ and r ′ are d = r = (0, 0). Then a(S, r) = (2, 10)
and TA(S, d, r) = (1 2

3 , 8
1
3 ), different from the original payoffs

received by the second and third bargainers. Thus, the Tempered
Aspirations solution is not consistent.

4.4. Domination axioms

The last group of axioms studies whether using our concept
guarantees that agents improve with respect to the disagree-
ment/reference point payoffs.
d-Domination (d-DOM): For every (S, d, r) ∈ ΣN , φ(S, d, r) ≥ d.
r-Domination (r-DOM): For every (S, d, r) ∈ ΣN , φ(S, d, r) ≥ r .

It is clear that the Tempered Aspirations solution satisfies
d-DOM, but Example 4.5 also shows that, if n ≥ 3, it is possible
that a bargainer receives less than her reference point payoff.1 An
extension of the Tempered Aspirations solution satisfying r-DOM
can be constructed, using the method designed by Bossert (1993)
to extend the Claims Egalitarian solution.2

5. Comparison with the Gupta–Livne solution

5.1. Axiomatic analysis of the Gupta–Livne solution

The Gupta–Livne solution (defined in Section 2) is the main
solution concept in the bargaining literaturewith a reference point.
In this section, we compare it with our Tempered Aspirations
solution. As a byproduct of this comparison, we obtain a number
of new results for Gupta and Livne’s concept. As we will see, the
duality between the two solutions influences the type of axioms
satisfied by each of them.

Gupta and Livne characterize their solution using the already
familiar WPO, SYM, and SC.INV, plus the following three axioms.
Relevant Domain (RD): For every (S, d, r) ∈ ΣN , φ(S, d, r) =

φ(cch({x ∈ S | x ≥ d}), d, r).
The RD property states that the outcome of the negotiation

is only affected by points that weakly Pareto-dominate the
disagreement point. This property is also satisfied by the Tempered
Aspirations solution, although it is not used in our characterization.
d-Restricted S-Monotonicity (d-REST.S-MON): For every (S, d, r),
(S ′, d′, r ′) ∈ ΣN , (d, r) = (d′, r ′), S ⊆ S ′, and a(S, d) = a(S ′, d′)
imply φ(S, d, r) ≤ φ(S ′, d′, r ′).

Originally proposed for standard bargaining problems by
Roth (1979), the d-REST.S-MON axiom can be seen as dual to
r-REST.S-MON. As the bargaining set S grows, the corresponding
aspirations must remain fixed in order to preserve monotonicity.

1 We thank Hervé Moulin for pointing out this possibility.
2 We thank William Thomson for this observation.
Limited d-Sensitivity (LIM.d-SENS): For every (S, d, r), (S ′, d′, r ′)
∈ ΣN , (S, r) = (S ′, r ′) and a(S, d) = a(S ′, d′) imply φ(S, d, r) =

φ(S ′, d′, r ′).
This axiom was originally labeled limited sensitivity to changes

in the disagreement point. It says that if the disagreement
point changes without altering the corresponding aspirations,
then the outcome of the negotiation is the same. Our solution
concept satisfies its dual version, LIM.r-SENS. However, our
characterization only uses ITR, a property clearly implied by LIM.r-
SENS.

Analogous arguments to Propositions 4.1 and 4.2 work to show
that the Gupta–Livne solution satisfies r-MON, ST.r-MON and
d-MON. Nevertheless, if n ≥ 3, ST.d-MON is violated.

Example 5.1. If n ≥ 3, the Gupta–Livne solution is not strongly
d-monotonic. Let S be defined as in Example 4.3, d = (0, 0, 0)
and r = d′

= (1, 0, 0). Then GL(S, d, r) = (1 3
5 , 1

1
5 , 1

1
5 ) and

GL(S, d′, r ′) = (1 3
4 , 1

1
8 , 1

1
2 ). The third bargainer is better off after

the first coordinate of d was increased by one, contradicting ST.d-
MON.

In terms of properties dealingwith uncertainty, it is straightfor-
ward to define the axioms d-REST.S-CAV and r-QCAV (analogous to
r-REST.S-CAV and d-QCAV) and then show that the Gupta–Livne
solution satisfies them. However, the example below shows that
the Gupta–Livne solution does not satisfy d-QCAV.

Example 5.2. Let S be defined as in Example 4.4, r = (4, 3),
d = (0, 0), d′

= (4, 2), and α =
1
2 , then GL(S, d, r) = (4 4

7 , 3
3
7 )

and GL(S, d′, r) = (4 2
3 , 3

1
3 ), but GL(S,

1
2d +

1
2d

′, r) = (4 1
2 , 3

1
2 ).

Bargainingwith respect to 1
2d+

1
2d

′ leaves the first bargainerworse
off than at d and d′, so the Gupta–Livne solution violates d-QCAV.

Analogous arguments to those shown in Proposition 4.6 ensure
that the Gupta–Livne solution does satisfy POP.d-MON. However,
Example 4.7 shows that it is not consistent. The following example
shows that Gupta and Livne’s concept does not complywith POP.r-
MON either.

Example 5.3. Let S ′
= cch({(0, 6, 6), (6, 0, 6), (12, 0, 0)}), d′

=

(0, 0, 0) and r ′
= (0, 0, 6). Then a(S ′, d′) = (12, 6, 6) and

GL(S ′, d′, r ′) = (4, 2, 6). If the third bargainer leaves with her
reference point payoff of 6, the new bargaining set is S =

cch({(6, 0), (0, 6)}). The projections of d′ and r ′ are d = (0, 0) and
r = (0, 0). Then GL(S, d, r) = (3, 3), making the first bargainer
worse off. Although in this example r ′

∈ WPO(S ′), moving r
marginally toward the origin does not change the essence of the
argument. Therefore, the Gupta–Livne solution is not population
r-monotonic.

Table 1 compares the two solution concepts. Observe that
the number of properties satisfied by our concept but not by
Gupta–Livne is equal to the number of properties for which the
opposite holds. It is interesting to note that this informal counting
analysis did not result in lopsided results.

5.2. The linear frontier case

Given a set of bargainers N ∈ N , we define a linear bargaining
problem with a reference point as a triple (S, d, r) ∈ ΣN such that
S = {x ∈ RN

|
∑

i∈N pixi ≤ w} for some (p, w) ∈ RN
++

× R. We
denote the family of linear bargaining problems with a reference
point as ΘN . As ΘN

⊆ ΣN , all definitions made in previous
sections remain valid.

Throughout this subsection, we normalize the bargaining set to
be S̄ = {x ∈ Rn

|
∑

i∈N xi ≤ 1} and d to be at the origin. SC.INV
prevents any loss of generality. This new problem is equivalent to
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Table 1
Axioms satisfied by the Tempered Aspirations (TA) and the Gupta–Livne (GL)
solutions.

Axiom Acronym TA GL

Weak Pareto-optimality WPO ✓ ∗ ✓ ∗

Symmetry SYM ✓ ∗ ✓ ∗

Scale invariance SC.INV ✓ ∗ ✓ ∗

S-continuity S-CONT ✓ ∗ ✓ ∗

r-restricted S-monotonicity r-REST.S-MON ✓ ∗ ×

d-restricted S-monotonicity d-REST.S-MON × ✓ ∗

Irrelevance of trivial reference
points

ITRP ✓ ∗ ×

Limited r-sensitivity LIM.r-SENS ✓ ×

Limited d-sensitivity LIM.d-SENS × ✓ ∗

Restricted domain RD ✓ ✓ ∗

d-monotonicity d-MON ✓ ✓

Strong d-monotonicity ST.d-MON ✓ × (n ≥ 3)
r-monotonicity r-MON ✓ ✓

Strong r-monotonicity ST.r-MON × (n ≥ 3) ✓

r-restricted S-concavity r-REST.S-CAV ✓ ×

d-restricted S-concavity d-REST.S-CAV × ✓

r-quasi-concavity r-QCAV × ✓

d-quasi-concavity d-QCAV ✓ ×

Population r-monotonicity POP.r-MON ✓ ×

Population d-monotonicity POP.d-MON × ✓

Consistency CONS × ×

r-domination r-DOM × (n ≥ 3) ✓

d-domination d-DOM ✓ ✓

∗ denotes axioms used to characterize the corresponding solution concept.

dividing an estate of size one among the bargainers in N . Besides
the Tempered Aspirations and Gupta–Livne solutions, two other
possible distributions are equal division, represented by the vector
1
n , and proportional division according to r . To abbreviate notation,
given a reference point r ∈ RN , let R :=

∑
i∈N ri. Then proportional

division is represented by the vector r
R .

Restricting the bargaining set to have a linear frontier enables
us to further compare our solution with Gupta–Livne. Moulin
(1987) shows that any solution concept satisfying WPO, SYM,
and SC.INV, is decentralizable and additive3 if and only if it can
be expressed as a linear combination of the vectors representing
equal and proportional division. The Tempered Aspirations and the
Gupta–Livne solution satisfy both properties, so the four vectors
are aligned.

Proposition 5.4. For every (S, d, r) ∈ ΘN such that r > d and
TA(S, d, r) ≠ GL(S, d, r), TA(S, d, r) is closer to equal division than
GL(S, d, r); and GL(S, d, r) is closer to proportional division than
TA(S, d, r).

Proof. After normalizing the problem (S, d, r), assume that n > 1
and r is asymmetric, otherwise TA(S, d, r) = GL(S, d, r) and there
is nothing to prove. Expressing the solution concepts as linear
combinations of the equal and the proportional division vectors
yields

TA(S̄, 0, r) =
R

R + n(1 − R)

 r
R


+

n(1 − R)
R + n(1 − R)

[
1
n

]
and

GL(S̄, 0, r) =
(n − 1)R
n − R

 r
R


+

n(1 − R)
n − R

[
1
n

]
.

It only remains to show that R
R+n(1−R) ≤

(n−1)R
n−R . As n − 1 ≥ 1, we

know that n−R = n(1−R)+(n−1)R ≤ n(n−1)(1−R)+(n−1)R =

3 Let φ be a solution concept on ΘN satisfying WPO, SYM, and SC.INV. φ
is decentralizable if, for every normalized linear problem (S̄, 0, r) ∈ ΘN and
every i ∈ N , φi(S, d, r) is a function of ri and R. This property is equivalent
to non-advantageous reallocation (Moulin, 1985), an axiom limiting the strategic
possibilities ofmultiple-player coalitions.φ is additive if, for every normalized linear
problem (S̄, 0, r) ∈ ΘN , every i ∈ N , and every α1, α2 ≥ 1, φi((α1 + α2)S̄, 0, r) =

φi(α1 S̄, 0, r)+ φi(α2 S̄, 0, r).
(n − 1)[R + n(1 − R)]. Multiplying by R and rearranging achieves
the desired result. �

The procedure above also shows that when n = 2, both
coefficients are equal to R

2−R . Therefore we have the corollary
below. Notice that a geometric argument based on the symmetry
along the Pareto-frontier is also possible.

Corollary 5.5. The Tempered Aspirations and the Gupta–Livne
solutions coincide in linear problems with two bargainers.

The next example illustrates the fact that, even assuming a
linear frontier, the Tempered Aspirations and the Gupta–Livne
solutions do not coincide if n ≥ 3.

Example 5.6. Consider three bargainers deciding about how to
divide $12, so that the bargaining set is described by S = {x ∈

R3
| x1 + x2 + x3 ≤ 12}. The disagreement point is d =

(0, 0, 0) and the reference point is r = (2, 5, 1). Equal
division is (4, 4, 4) while proportional division according to r
yields (3, 7 1

2 , 1
1
2 ). Furthermore, GL(S, d, r) = (3 3

7 , 6, 2
4
7 ) and

TA(S, d, r) = (3 3
5 , 5

2
5 , 3). Notice that the four solutions are

collinear, with our Tempered Aspirations solution being closest to
equal division of the estate.

6. Concluding remarks

It is important to note that we are not arguing in this paper
that the Tempered Aspirations solution concept is superior to the
solution concept of Gupta and Livne (1988) or the reverse. In fact,
to the contrary, we wish to emphasize the point that there is no
one solution for all seasons. What we do claim is that the context
of the bargain will affect the manner in which the reference point
influences the negotiated outcome. The axiomatic approach taken
here is useful to understand their differences and similarities,
therefore making it easier to choose an appropriate concept in any
given situation.

Regarding future research, we believe that one fruitful avenue
is an experimental comparison of the Tempered Aspirations and
the Gupta–Livne solutions. It would be useful to determine the
situational and contextual boundary conditions under which each
of the solution concepts would be significantly better predictors.
A second direction for future work is to exploit the similarities
with Chun and Thomson’s (1992) Proportional solution and study
the implications of making the claims point depend on the shape
of the bargaining set. Finally, Balakrishnan and Eliashberg (1995)
also study aspirations, but from an alternating offers perspective.
It would be interesting then to find a bargaining process leading to
our solution concept, enabling us to compare both approaches.
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