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Abstract 

Given the success of neural networks in a variety of applications in engineering, such as speech and image quantization, 
it is natural to consider its application to similar problems in other domains. A related problem that arises in business is 
market segmentation for which Clustering techniques are used. In this paper, we explore the ability of a specific neural 
network, namely the Frequency-Sensitive Competitive Learning Algorithm (FSCL), to cluster data for developing strategic 
marketing decisions. To this end, we investigate the comparative performance of FSCL vis-h-vis the K-means clustering 
technique. A cluster analysis conducted on brand choice data for the coffee category revealed that the two methodologies 
resulted in widely differing cluster solutions. In an effort to address the dispute over the appropriate methodology, a 
comparative performance investigation was undertaken using simulated data with known cluster solutions in a fairly large 
experimental design to mimic varying data quality to reflect data collection and measurement error. Based on the results of 
these studies, it is observed that a combination of the two methodologies, wherein the results of the FSCL network are input 
as seeds to the K-means, seems to provide more managerially insightful segmentation schemes. 

Keywords: K-means; Neural networks; Segmentation; Comparative performance; Brand choice; Data quality; Marketing 

1. Introduction 

A common research objective across a variety of  
disciplines is to group items that are similar. This 
grouping can be of  people for identifying market 
segments; or of  cities and regions for selecting test 
market sites; or of  species of  plants and animals for 
classification; or of  speech and signals for data com- 
pression. The methodologies for such grouping ef- 
forts include multivariate analyses and, more re- 
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cenfly, neural network techniques. 
Management scientists are interested in neural 

networks particularly for analyzing noisy data, deal- 
ing with problems that have no clear cut solutions 
and their ability to learn. Neural networks have been 
designed for various purposes, including managerial 
problems such as handling census data (Openshaw 
and Wymer,  1991), forecasting (Murtagh, 1991a), 
time-varying data (Rowher, 1991), bankruptcy pre- 
diction (Wilson and Sharda, 1994), the traveling 
salesman problem (Fort, 1991), and grouping or 
clustering (Ahalt et al., 1990; Gath and Geva, 1988; 
Krishnamurthy et al., 1990; Osipenko, 1988). 
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However for these newer technologies, such as 
neural networks, to become accepted in practice they 
should demonstrate at least parity if not superiority 
over existing techniques. To this end, in this paper 
we analyze the capabilities of a specific neural net- 
work implementation against a more traditional tech- 
nique, namely K-means, for the general problem of 
clustering. 

Although several networks have been proposed, 
little comparison with traditional techniques is avail- 
able. Further, different applications of the same basic 
technique may produce different results leading to a 
lack of stability in the cluster solutions as illustrated 
in Section 3. The researcher must determine which 
data reduction method to use for h is /her  purposes. 
Which method is best for the data characteristics, the 
sample size, the amount of data reduction needed? 
Some of the more common techniques, such as 
factor analysis and clustering, have extensive re- 
search bases behind them to suggest where problems 
may arise and which methods might be best for 
which data characteristics and purposes (e.g., Bezdek 
and Hathaway, 1990; Milligan, 1980; Milligan and 
Cooper, 1985; Cooper and Milligan, 1988; Dubes, 
1987). 

The recent interest in neural network analysis has 
resulted in numerous techniques suggested for many 
different applications (e.g., Fort ,  1991; Hecht-Niel- 
sen, 1990; Kohonen, 1982a,b,1989). This relatively 
new methodological area has  had little of the rigor- 
ous testing of these newly suggested methods to help 
the researcher answer comprehensively the questions 
posed in the preceding paragraph. A small literature, 
however, is beginning to develop (e.g., Balakrishnan 
et al., 1992, 1994; Bezdek, 1991; Naylor and Li, 
1988). 

This paper reports on the performance of one kind 
of neural network, the Frequency-Sensitive Competi- 
tive l_~arning (FSCL) network developed by Krish- 
namurthy et al. (1990) for Vector quantization. This 
method is compared with K-means non-hierarchical 
clustering. Both of these methods attempt to achieve 
the same objective, namely, associating a set of  
objects with a corresponding representative object. In 
vector quantization, the goal is to classify vectors 
into classes. In engineering applications these vectors 
represent input from speech or images. In manage- 
ment applications, such as market segmentation, data 

are collected in the form of attribute's values and 
clustering techniques are used to classify each data 
point. In either case, the goal is to classify the input 
into one of the pre-specified number of output groups. 

One of the problems in applying these techniques 
directly to real data for market segmentation is that 
the results obtained from the two techniques do not 
typically match. Since there is no absolute criterion 
to unequivocally say the results of one technique are 
right and the other wrong it becomes incumbent on 
the researcher to test these techniques using simu- 
lated data whose properties are known (Milligan and 
Cooper, 1987). This paper, therefore, examines both 
simulated data and brand choice probabilities data to 
compare the FSCL neural network with the K-means 
algorithm. 

The remainder of the paper is organized into a 
brief explanation of the two approaches, the method- 
ology for the study, the results of the study, limita- 
tions of the study, and conclusions and future re- 
search directions. 

2. Neural networks 

A neural network consists of two basic compo- 
nents: processing elements (or nodes) and their in- 

terconnections. The processing element receives a 
number of input signals and then generates a single 
output signal which is then " sen t "  to one or more 
processing elements via the interconnections. How 
the nodes are connected to each other between the 
various layers constitutes the system's knowledge 
and determines how the neural network will respond 
to any arbitrary input. A connection between two 
nodes could have positive or negative weights. The 
weight wiy is positive if node j excites node i and 
negative i f  j inhibits i. The strength of the connec- 
tion is given by the absolute value of  the weight wij. 
The pattern of connectivity can be represented by a 
weight matrix W in which wij represents the strength 
and sense (i .e. ,  excitatory or inhibitory) of the con- 
nection between: j and i. During the learning process 
these :weights a r e  modified based on  the learning 
algorithm used and the desired output (supervised 
learning) for a given input. Since several sources 
discuss the concept of neural networks in  detail (see 
for example, Rumelhart et al., 1987; Nelson and 
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Illingworth, 1991; Hecht-Nielsen, 1990), here we 
will only discuss the specific approach we have used. 

2.1. The FSCL network 

Krishnamurthy et al. (1990) and Ahalt et al. (1990) 
report on a revised method of vector quantization 
using frequency sensitive competitive learning 
(FSCL). Vector quantization is described as " a  sta- 
tistical method of encoding data for transmission to a 
receiver" (Krishnamurthy et al., 1990). Neural net- 
works are suggested as particularly suited to this task 
since they are adaptive in two senses. First, each new 
training vector can modify the codebook vectors so 
there is on-line learning. This may be needed when 
the source statistics change over time, for example, 
when communication channels are changed. Second, 
neural networks can process one vector of data at a 
time instead of requiring the entire training set to be 
processed at once in a batch mode, as in the ap- 
proach by Linde et al. (1980). The latter is particu- 
larly computationally intensive (Krishnamurthy et 
al., 1990). 

The frequency sensitive competitive learning al- 
gorithm works as follows. Information or voices can 
be represented as a vector x consisting of k dimen- 
sions. Usually, k dimensions are too large for trans- 
mission over current lines o r  fiber optics. Therefore, 
the k dimensions must be reduced to a smaller 
number for transmission. 

To compress the data or voice for transmission, 
there needs to be a system for encoding the data 
before transmission and then decoding it at the re- 
ceiving location. A codebook is used for this pur- 
pose. The codebook C consists of M codewords c,., 
each of k dimensions. One of the M codewords is 
used to represent the k-dimensional vector x. This is 
basically a data reduction approach. The codebook is 
developed using a large set of training data. 

When a vector is to be encoded, it is matched 
with the closest codeword by calculating the distor- 
tion d(x, ci), i = 1 . . . . .  M between the vector and 
each codeword. If  the jth codeword is the closest, 
the vector is then encoded as codeword cj., Upon 
receipt of the signal, the receiver decodes using the 
appropriate codeword. 

The basic neural network will have M neural 
units, each with an associated weight vector that is 
the ith codeword, i.e., wi = cg. All k dimensions of 

the input vector x are fed in parallel to the neural 
network. Distortions d( x, w i) are calculated between 
the input vector and each of the M units. The 
distortions may be measured using some distance 
measure, the Euclidean distance being a common 
approach for clustering techniques. The unit with the 
minimum distortion 'wins '  and the input vector is 
assigned to the codeword ci. 

In this process, a few codewords may account for 
a disproportionate share of the input vectors. Gross- 
berg (1976) and Hecht-Nielsen (1988) suggest means 
of minimizing the winner-take-all problem. Lipp- 
mann (1987) and Winters and Rose (1989) indicate 
means of finding the winner. Competitive learning 
algorithms adjust the weight vectors of neural units 
that win too frequently, or are in the neighborhood of 
the winner in the case of the Kohonen self-organiz- 
ing map (Kohonen, 1989). Competitive learning is 
useful if a criterion of the effort is to maximize 
entropy, that is, to have codewords chosen with 
relatively equal frequency. 

The Frequency-Sensitive Competitive Learning 
(FSCL) Training Algorithm counts the number of 
times, u i, a particular unit wins and increases the 
distortion measure using the non-decreasing 'fair- 
ness' function F ( u ) .  The fairness function initially 
favors uniform codeword usage but minimizes dis- 
tortion as training progresses. The algorithm is  an 
implementation of the Grossberg conscience princi- 
ple and works as follows (Krishnamurthy et al., 
1990): 
1. Consider an input vector x. 
2. Find the distortion D i = F ( u i ) d ( x , w  i) for all 

output units. 
3. Select the output unit i* with the smallest distor- 

tion and label it as the winning unit and increment 

g i *  " 

4. Adjust the selected weight vector wi.(n + 1)=  
wi,(n) + E(n)[ x ( n ) -  wi,(n)] where n is the 
training time and 0 < E(n) < 1. 

5. Repeat steps 1 -4  for all training vectors. 

2.2. K-means clustering 

Clustering algorithms are a class of data reduction 
techniques. Hierarchical clustering algorithms start 
with n clusters, where n is the number of observa- 
tions, such as people, each having information on k 
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dimensions, such as demographic data. The distance 
between observations is calculated in k-dimensional 
space. The two closest points are merged into a 
cluster. This process continues until all observations 
are in one cluster. One then has to determine the 
number of clusters using a decision rule (Milligan 
and Cooper, 1985). 

In non-hierarchical clustering, the researcher spec- 
ifies the number of clusters in the data set a priori. 
Since this approach matches the vector quantization 
problem, a non-hierarchical method is used here for 
comparison. The K-means procedure, as used by 
FASTCLUS in SAS (SAS, 1990), selects M random 
points from the data set. These are used as cluster 
seeds and all other points are assigned to the nearest 
cluster seed. Successive iterations involve replacing 
the current cluster seed by the cluster mean and then 
reassigning all points to the nearest new cluster seed. 
The process continues until there is no change in 
cluster means from the previous iteration or the 
difference is very small. 

3. An application o f  the FSCL network and K- 
means  methodology 

The actual data employed in this study represent 
the brand switching probabilities on 18 different 
coffee brands derived from scanner data. The data 
collection procedure and method of constructing these 
switching probabilities are described in Bucklin and 
Srinivasan (1991). The input to the K-means cluster- 
ing algorithm and FSCL network was an average 
probability switching vector (18-dimensional) at the 
sub-household level. There were a total of 207 sub- 
households which were to be clustered into six dis- 
tinct segments as recommended by Bucklin and 
Srinivasan (1991). Each of these 207 objects to be 
grouped was represented by a vector specifying 
choice probabilities for 18 brands of coffee. 

The data set comprising 207 × 18 choice proba- 
bilities was then clustered using the FSCL network 
as well as the K-means algorithm to generate a 
six-segment solution. In the study, the K-means 
procedure for non-hierarchical clustering was per- 
formed with iterations. In this case, the algorithm 
needed 11 iterations to converge using the default 
values and stopping rule. 

The resulting cluster solutions that were generated 
by these altemate methods were then compared for 
similarity on the criteria of (1) segment size, (2) 
segment means, and (3) their managerial interpreta- 
tion. In Table 1, we show the comparative results of 
the six-cluster solutions produced by the K-means 
procedure (FASTCLUS) and the FSCL network 
(A_halt et al., 1990). Even a cursory glance at this 
table indicates that the FSCL network results are not 
similar to those produced by K-means. Both methods 
differed in something as fundamental as the size of 
the individual clusters. For instance, the largest seg- 
ment had 67 members using K-means while the 
largest FSCL cluster had 42 members. Interestingly, 
the FSCL procedure generated six clusters that, con- 
sistent with our prior expectations, were more or less 
of equal size, varying only from the largest with 42 
to the smallest with 31 members. On the other hand, 
the K-means procedure generated widely varying 
sized clusters. Naturally enough, the two procedures 
did not produce cluster means that were identical. 

Given that clusters differ by method, the next 
issue is their managerial interpretability. For compar- 
ative purposes and to be consistent with prior analy- 
sis of Bucklin and Srinivasan (1991), we use a mean 
of 0.08 as the 'critical cut-off' value in 'assigning' 
brands to a particular segment's choice activity. This 
implies that we can characterize the clusters gener- 
ated by the two methods as follows. In the case of 
K-means  (with iterations): cluster 1 is a ground 
caffeinated segment (excluding the store private la- 
bel brand); cluster 2 i s  an instant caffeinated seg- 
ment; cluster 3 is a decaffeinated segment; and, 
Cluster 4 is Folgers: ground caffeinated segment. 
Clusters 5 and 6 are primarily the store private label 
ground caffeinated segment and the Maxwell House 
instant caffeinated segment, respectively. The FSCL 
network generated segments can be characterized as 
follows: cluster 1 is the ground caffeinated segment 
emphasizing Maxwell House and Master Blend; 
cluster 2 is Sanka and ground decaffeinated segment; 
cluster 3 i s  an instant caffeinated (emphasizing 
Maxwell House) and store brand ground caffeinated 
segment; cluster 4 is Nescafe instant caffeinated and 
instant decaffeinated segment; cluster 5 is a Folgers 
segment; and cluster 6 is primarily Maxwell house 
ground caffeinated segment. 

As we can see, the managerial interpretation of 
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the two sets of segments is not the same. This raises 
an interesting question about which segmentation 
scheme should be adopted in the development of 
marketing strategies. To answer such a question 
requires studying the comparative performance of 
the two approaches to cases wherein the ' true'  clus- 
ter solutions are known. To this end, the next stage 
of the research, then focuses on studying the two 
approaches on simulated data with known cluster 
solutions representing different qualities of data. 

4. Methodology 

Several factors can affect the quality of cluster 
recovery, such as the number of  clusters in the data, 
the number of dimensions used to describe the data, 
and the level of error in the data (Milligan, 1980). 
This study consists of a full factorial experimental 
design crossing the number of clusters with the 
number of dimensions (attributes) with levels of 
error. The result is a 4 × 3 × 3 design with three 
replications per cell, for a total of 108 data sets. This 
is a common approach to evaluating clustering meth- 
ods (Milligan, 1980; Milligan and Cooper, 1985, 
1987). Each data set is generated using the procedure 
of Milligan (1985) procedure and contains 50 points. 
The FSCL network and the K-means algorithms 
each clustered all 108 data sets. 

The number of true clusters in each data set was 
2, 3, 4, or 5 with a roughly equal distribution of 
points in each cluster. The number of measures (i.e., 
attributes) used to characterize each data set was 
varied so that all points in a data set were described 
by a 4-, 6-, or &dimensional: space. The three levels 
of error were no error, low error; or high error. The 
no error level would be similar to a noiseless trans- 
mission of data or data obtained when there is no 
data collection and measurement error. 

The simulation data were generated as mmcated, 
multivariate normal distributions in Euclidean space. 
The data sets were :created to have reasonably dis- 
tinct and separate clusters as defined by internal 
cohesion and external isolation (Cormack, 1971). 
Internal cohesion in these data sets require all data 
points to be within the boundaries of the cluster on 
all dimensions. Boundaries were three standard devi- 
ations across for all dimensions. External isolation 

was operationalized by having the first dimension be 
non-overlapping. The distance between clusters was 
f ( S  1 + $2), where f is the separation factor and S l 
and S 2 are the standard deviations of cluster 1 and 2, 
respectively, on the first dimension (see Milligan, 
1985). The value of f was randomly selected from a 
uniform distribution bounded by 0.25 and 0.75. Other 
dimensions were permitted to overlap. Thus, cluster 
separation is guaranteed on the first dimension only 
in the non-error condition. 

The data point coordinates were error-perturbed to 
distort the true distances between points to achieve 
low and high error. This simulates noise in the data 
which can occur with data collection or measurement 
error. The low error condition still did not permit 
overlap on the first dimension but the separation was 
very small. The high error condition did have cluster 
overlap on the first dimension and possibly on the 
other dimensions. New interpoint distances were cal- 
culated using [~'~,i( A i j -  A i k -  3Eijk)2] l/2, where Aij  
and Aik are the original coordinate values for obser- 
vation j and k on dimension i. The error term is 
generated from a univariate normal distribution with 
a mean of zero and a standard deviation determined 
by taking the average of the standard deviations on 
dimension i for the two clusters containing points j 
and k. The multiplication factor, 8, had values of  1 
or 2, which determined the low and high error levels, 
respectively (Milligan, 1985). 

The  FSCL network Used the fairness function 
F(u  i) = It i t i e - ( / r  where /3 and T are constants and 
t is the training iteration number. The current imple- 
mentation uses a /3 value of 0.06 and 1 / T  value of 
0.00005. T h e  learning rate used was E(n) = 
0.06 e-°"°5("- l). 

5. Results on simulated data 

The results of  the K-means clustering and FSCL 
network techniques were compared on overall cluster 
recovery and sensitivity to cluster characteristics. 
The percent of the 50 observations misclassified by 
the different techniques indicated cluster recovery 
performance. Analyses of variance (ANOVAs) using 
the general linear models procedure (GLM) available 
in the current edition of SAS (1990) tested hypothe- 
ses about the effects of the data characteristics on the 
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Table 2 
ANOVA results of misclassifications by cluster, 
error level 

attributes, and 

Variable K-means FSCL 
(p-values) (p-values) 

Overall model 0.244 0.054 
No. of clusters 0.750 0.005 * 
No. of attributes 0.147 0.049 * 
Error level 0.001 * 0.014 * 
Error level × No. of clusters 0.882 0.324 
Error level × No. of attributes 0.172 0.996 
No. of clusters × No. of attributes 0.661 0.477 
Error level X No. of clusters × No. 0.732 0.400 
of attributes 

* Significant at 0.05 level. 

No Error Low Error High Error 

~ - ~  FSCL q- K-Means 

Fig. 1. Effect of error: mean percent of points misclassified. 

clustering results. Results of these analyses are pre- 
sented in Tables 2 and 3. 

K-means recovered the correct cluster structure of 
each error-free data set with no more than five 
iterative re-computations of the cluster seeds. The 
majority of the low and high error data sets were 
also correctly classified by the FASTCLUS proce- 
dure. Only a few of the data sets were poorly 
classified which increased the average number of 
misclassifications across all data sets. 

Hypothesis 1. The percentage o f  misclassifications 
does not differ across error levels. 

For both K-means and FSCL the main effect for 
the level of error in the data was significant. For the 

Table 3 
Mean percent of observations misclassified by error, number of 
clusters, and number of attributes 

Variable Level K-means FSCL 

Overall average 

Error 

Number of clusters 

Number of attributes 

1.33% 9.19% 

None 0.00 7.28 
Low 0.22 6.50 
High 3.78 13.78 

2 1.48 4.96 
3 0.66 6.07 
4 2.00 10.44 
5 1.18 15.26 

4 1.84 12.83 
6 2.06 8.44 
8 0.12 6.28 

K-means case the error level was significant at the 
0.01 level (N = 108, p < 0.001). The mean misclas- 
sification of observations increased from 0.0% to 
0.22% to 3.78% for the no error, low error, and high 
error data sets, respectively (Table 3). 

The FSCL network results are similar to the 
K-means case. However, the percentage of misclassi- 
fications for all three levels was higher for the FSCL 
networks (see Fig. 1). Recovery deteriorated as addi- 
tional error was introduced to the data. The error 
levels ranged from 7.28% for the no error condition, 
to 13.78% for the high error condition. The low error 
condition was close to the no error results at 6.5%. 

Hypothesis 2. The percentage o f  misclassifications 
does not differ across the number of  clusters in the 
data set. 

Since the data always consisted of 50 points, as 
the number of clusters increase there are fewer points 
for the algorithms to consider in each cluster. This 
hypothesis was confirmed for the K-means case, 
however for FSCL the hypothesis was rejected (p  = 
0.005). In the case of the FSCL network, as the 
number of clusters increased, cluster recovery deteri- 
orated, reaching 15.26% for five clusters. The best 
recovery was for two clusters with 4.96% of the data 
points misclassified. The two and three cluster 
(6.07%) misclassification rates were much lower than 
the four (10.44%) and five (15.26%) rates (see Fig. 
2). Closer examination of the results suggests that 
there is a tendency to overcluster, that is, to have two 
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2 3 4 5 

FSCL + K-Means 1 

Fig. 2. Effect of number of clusters: mean percent of points 
misclassified. 

4 6 8 

FSCL + K-Means 

Fig. 3. Effect of number of attributes: mean percent of points 
misclassified. 

true clusters merged into one cluster. When this 
happens information is lost by not separating the true 
clusters. 

Hypothesis 3. The percentage of  misclassifications 
does not differ across the number of  attributes of  
each object. 

Previous clustering research results indicate that 
more, relevant attributes should lead to better recov- 
ery (e.g., Milligan, 1980). However, in the case of 
the K-means approach there was no significant effect 
(see Table 2) on the percentage of misclassifications, 
although the percent misclassified with eight at- 
tributes was the lowest amongst three levels (see 
Table 3). 

In the case of the FSCL network, recovery im- 
proved as the number of attributes increased from 
four to eight. Half as many points were misclassified 
(6.28%) when eight dimensions were used as when 
four dimensions were used (12.83%) (see Fig. 3). 
This pattern is consistent with that reported by Kr- 
ishnamurthy et al. (1990) for up to 128 dimensions 
in the case of an engineering application. 

6. Brand choice data revisited 

Given the above results of the studies on both 
simulated and actual data, we now revisit the brand 
switching data on the 18 different brands of coffee 

reported in Section 3. The major conclusions of the 
above two studies is that each method seems to have 
something to recommend. Specifically, based on the 
above results, we find that, the use of K-means 
proved to be more accurate in the classification of 
synthetic data. However, the use of the FSCL net- 
work with its 'conscience mechanism' had less varia- 
tion in the cluster sizes on the larger real data. 

This provoked the natural extension of whether 
the combination of the two disparate methods could 
lead to  even more managerially useful results than 
either alone i~ Although the K-means approach pro- 
vides a better 'hit rate' on synthetic data, it is 
well-known to be prone to the biases involved in the 
selection of initial cluster seeds (Milligan, 1980). 
This problem of seed selection was, however, miti- 
gated in the case of the synthetic data by knowing a 
priori the correct number of clusters, and by having 
relatively errorfree information. Though the results 
of this experiment do suggest that its internal validity 
is relatively higher, these simulation conditions that 
resulted in the superior performance of K-means 
may ibe less likely to hold in actual applications. 

Since, as noted earlier, seed selection is an impor- 
tant issue with K-means, we decided to combine the 
two approaches by employing the FSCL network to 

We would like to thank the reviewers of this journal for their 
insightful comments on this. 
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assist in providing the initial seeds. We use the 
FSCL network results as the seeds to the K-means 
method, the approach that we 'trust '  more for the 
final cluster solution. The resulting solution should 
be intriguing because we now have the opportunity 
to assess how the K-means results change with the 
new seeds. If  the K-means method is particularly 
robust, then even with the different starting point the 
results may turn out to be identical to the original 
K-means. Altematively, given the new starting point, 
the results could be similar to the FSCL results or 
somewhere in between the original FSCL and K- 
means results. Hence, we now have the opportunity 
to assess the quality of the resulting solution in terms 
of ease of interpretation, face validity, and disparity 
in the obtained cluster sizes when the seeds from 
FSCL are employed. 

In the study, the K-means procedure for non- 
hierarchical clustering was performed with iterations 
using as the input seeds (reported in Table 1) the 
centroids of the cluster solution provided by the 
FSCL network. In this case, the K-means algorithm 
needed 15 iterations to converge using the traditional 
default values stopping rule 2(see Table 4). 

Interestingly, the resulting solution provided clus- 
ters of more equal sizes than the K-means method by 
itself. The variation of cluster sizes ranged from a 
high of 49 to a low of 19 3. Given that these cluster 
sizes are managerially more useful, the next issue is 
their managerial interpretability. We can characterize 
the clusters generated by the combination of the two 
methods as follows: cluster 1 is the segment Maxwell 
House and Master Blend ground caffeinated; cluster 
2 is the ground decaffeinated segment; cluster 3 is 
the instant caffeinated segment; cluster 4 is the in- 
stant decaffeinated segment; cluster 5 is the Folgers 
ground caffeinated segment; and cluster 6 is the 
ground caffeinated segment emphasizing Maxwell 
House. 

As should be fairly clear from the above cluster 
solution, the resulting segments are much 'cleaner',  

2 The analysis was rerun by relaxing the various default param- 
eters of convergence and number of iterations. Changing these 
parameters had no effect on the resulting clusters. 

3 This was, however, a more unequal sized outcome than that 
provided by the FSCL network by itself. 

and have better managerial interpretability than ei- 
ther of the methods individually as reported in Table 
1. In particular, the combined approach seems to 
have generated clusters with greater precision. For 
instance, even though we started with the seeds using 
the FSCL network, the new cluster 5 with 19 house- 
holds and 0.64 choice probability for Folgers' ground 
caffeinated (GC-F) is more meaningful than the one 
obtained by FSCL alone which had 32 members but 
grouped together more households with greater pur- 
chase variations to lower the GC-F choice probabil- 
ity to 0.41. Similarly, the new cluster 1 has fewer 
(35) members who on aggregate have a much higher 
purchase probability (0.45) for the 'Master Blend- 
ground caffeinated' when compared with 67 mem- 
bers with 0.30 choice probability for the K-means 
stand alone approach. Again, the new cluster 2 iden- 
tifies more precisely the members of the Ground 
Decaffeinated segment, i.e., those having greater 
purchase probabilities, than either of the other two 
methods by themselves. The higher 'face validity' of 
the results obtained, and the fewer anomalies pre- 
sent, seems to imply that the combination of conven- 
tional statistical techniques along with the newer 
machine learning algorithms may have much to offer 
and might be the direction to take in the future. 

7. Discussion and conclusions 

While the procedure for generating data sets in 
the study reported here has been used for clustering 
research comparisons, it has only been used once for 
neural networks (Balakrishnan et al., 1994). As such, 
some limitations relating to the study are noted. 
First, the number of data points may be considered 
relatively small when compared to those commonly 
used for neural networks. Second, conducting the 
analysis on error-free data and knowing the correct 
number of clusters in the data may have favorably 
biased the results as the most serious problem in the 
K-means approach is the selection of initial cluster 
seeds (see Milligan, 1980). Using the correct number 
of clusters and error-free data significantly reduced 
the problem of selecting the seeds. Analyses con- 
ducted on data with skewed distributions or other 
forms of error may result in a lower recovery rate. 
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Despite these limitations, the K-means algorithm 
performed well. 

Although the FSCL network chosen for this study 
did not perform well, several contributing factors 
should be considered that would provide the basis 
for future research in the area. It should first be 
noted that the unsupervised learning approach used 
in the FSCL network makes it a natural starting point 
to explore for use in clustering. Kangas et al. (1990) 
suggest that for pattern recognition or other decision 
processes it is possible to significantly improve 
recognition accuracy by 'fine tuning' with additional 
information. More importantly, the information 
needed to minimize misclassification involves em- 
ploying multiple codebook (i.e., weight) vectors to 
represent each cluster. These multiple vectors, they 
suggest, are the vectors defining the boundaries of 
the clusters rather than the typical centroids. Unfor- 
tunately, in the context of applied research, the very 
boundaries of the clusters are typically not known 
and have to be determined. 

Another problem is the choice of the parameters 
for the neural network. How does one choose the 
appropriate network parameters for a data set? There 
is really no clear cut answer to this problem in the 
unsupervised framework. Here, since the cluster so- 
lutions were known, the parameters were set based 
on an initial study of the hit rate on a small sub-set 
of the data sets. However, since this not feasible in 
real data sets, another approach might be to choose 
parameters that generate more or less equal clusters. 

Cluster recovery for the FSCL network improved 
as more relevant attributes were added. This is con- 
sistent with previous clustering results and suggests 
that the more, useful information available for the 
FSCL network, the better the recovery. By itself, 
based on the simulation data results, the FSCL 
method should be used with considerable caution for 
clustering purposes. Of  concern is the significant 
sensitivity of the FSCL network to increases in error 
level and to increases in the numbers of clusters. I f  
the dimension of k for the codebook is very large, 
there may be a better chance to select the correct 
assignment of data points to clusters. 

Another aspect that has been investigated in this 
research is the combining of the results of the neural 
network methodology with the K-means approach. 
This combination for the market data considered 

here has resulted in better solutions than when either 
technique was used by itself. Future research should 
be conducted to extensively study the implications of 
such integration. 

Future research should also investigate different 
data characteristics, such as kinds of error perturba- 
tions including skewed distributions and the influ- 
ence of outliers in the data. For now, users of the 
FSCL network should be cautious about using it for 
clustering small data sets. It appears to work better 
for larger numbers of training data, e.g., 14000 
vectors (Krishnamurthy et al., 1990) Additionally, 
the FSCL algorithm has been shown to perform 
better than the Kohonen selforganizing map (Ahalt et 
al., 1990), however, the K-means algorithm out per- 
formed the FSCL algorithm in this study. 
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