
Name: Physics 225 December 14 1

I want to post your grades (anonymously) on the web. If you want this, please give me an alias,
or give me permission to use your student number:

Use my student number
Don’t use my student number, use this alias:

Please indicate whether I should or should not put your exam and grade information in a box
for you to pick up.

Put my exam etc in the box.
Do not put my information in a public box

You may use two sides of a single sheet of notes you personally prepared.
Please put your name on each page. There are 6 pages with 7 problems with a total of 16 parts

labeled with (a), (b), (c), (d). All those parts count equally. Some are further divided and labeled
like “i.”

The exam goes from 8:30 until 10:20.
Please make your logic clear. If you just write down numbers it is impossible to tell what you

are doing. And if you have a calculator that does all your units conversions, you must still show
what you are doing.

If you need to do scratch work, use the back of the pages. If you mess up the space for the
answer, put it on the back of the page with the question on it, in a box and clearly labeled, and
make a note in the space the answer should go.
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1. Muons are made in the upper atmosphere by cosmic ray collisions with the nuclei of the air
atoms. What energy muons (moving directly down toward the Earth) made at 30,000 m
altitude have a 50% chance of reaching the surface before decaying? (Muons have mass 106
MeV/c2 and a half life of 1.5×10−6 s.) Hint: if you find γβ >> 1 you can use β = 1 in places
where it is reasonable.
The muon half life is a proper time. In the Earth frame this time is dilated by a factor γ. The energy
is γmc2 , so we want to find γ. If the muons are to reach the Earth in a dilated half life, they must go
l = 3 × 104 m in the dilated lifetime. Thus

l = βcγt1/2

or

γβ =
l

ct1/2
=

3 × 104

(3 × 108)(1.5× 10−6)
= 67

since γβ >> 1 we approximate β = 1 so γ = 67 and E = γmc2 = (67)(106) = 7.10 GeV

Alternately, you could say in the muon’s rest frame it sees a contracted length (the altitude, 30,000 m
is a propoer length) go by, and the muon lasts 1.5 µS. The atmosphere is going by at a speed of βc
so you start with

l/γ = βct1/2

which gives the same result.

2. A ∆++ particle of mass 1239 MeV/c2 decays into a proton and a positive pion. (Proton mass
is 938 MeV/c2 and pion mass is 140 MeV/c2).

(a) What is the combined kinetic energy of the proton and pion in the rest frame of the
∆++?
Energy is conserved and E = mc2 so initially E = m∆c

2 and finally

E = Ep +Eπ = mpc
2 +mπc

2 +Kp +Kπ

so
m∆c

2 −mpc
2 −mπc

2 = Kp +Kπ = Ktot = 1239− 938− 140 = 161 MeV

(b) What is the total energy of the proton in the ∆++ rest frame?

This one is harder. Energy and momentum are conserved. Intially the ∆ is at rest so P = 0. Finally,
P = 0 so

Pπ = −Pp.

Since we are dealing with E,m and P , we can write conservation of energy and square:

E∆ = m∆c
2 = Ep +Eπ

this will work best if we rewrite it as
m∆c

2 −Ep = Eπ

and then square:
(m∆c

2)2 − 2m∆c
2Ep + E2

p = E2
π

using the expression for E2 = (mc2)2 + (Pc)2 with Pp = Pπ we get

(m∆c
2)2 − 2m∆c

2Ep + (mpc
2)2 = (mπc

2)2
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which we solve

Ep =
m2

∆ +m2
p −m2

π

2m∆
c2 =

12392 + 9382 − 1402

(2)(1239)
= 967 MeV

This is the total energy of the proton. As a rough check, note the kinetic energy is 967−938 = 29 MeV,
which is not nuts considering there is 161 MeV kinetic energy to share between the proton and pion.
The pion, being lighter, will need more kinetic energy than the proton to have the same momentum.

3. A distant galaxy is moving away from us at 0.60c.

(a) Lyman-alpha photons have a wavelength of 121 nm (in the rest frame of the emitting
hydrogen.) This radiation comes from transitions from which state to which state in
hydrogen? (give a brief reason for your answer)
Lyman-alpha come from the transition from n = 2 to n = 1, i.e. the first excited state to the
ground state. Since the energies are ER/n

2 and ER = 13.6 eV, this transition produces a photon
of (13.6)(3/4) eV. That is about 10 eV. Since E = hf = hc/λ for photons, and hc = 1240 eV,
a 121 nm photon has about 10 eV too. No other transition is close in energy to this, we don’t
have to do the math any better.

(b) What is the wavelength we see for Lyman-alpha light from that galaxy?
The galaxy is receeding from us, so the Doppler shift will give us a longer wavelength. The factor
is

√
(1 + β)/(1 − β), where I chose the signs to make a factor bigger than 1. This factor is

√
(1.6/0.4) =

√
4.0 = 2

so we see the light at 2 × 121 = 242 nm

(c) Material is ejected from that galaxy at a speed of 0.90 c (relative to that galaxy) in
a direction toward us. How fast do we observe this material to move, and in what
direction?
We have a system moving away from us, with V = 0.6c, and a velocity in that system. The
x-direction is the direction the distant galaxy is going. The velocity in that system is U ′

x = −0.9c,
and we want Ux in our system.

Ux =
U ′

x + V

1 + U ′
xV
c2

=
−0.9c+ 0.6c
1 − (0.9)(0.6)

=
−0.3c
0.46

= 0.65c
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4. A 1.0 MeV photon compton scatters.

(a) What angle of scattered photon corresponds to the highest energy electron?
If the photon scatters backwards (at 180◦ with respect to its initial direction) it will transfer the
most momentum to the electron. So scattering at 180◦ gives the highest energy electrons. If
you look at the Compton formula for change in wavelength, you will see the biggest change is at
180◦, so this is another way to see the electron gets the most energy for the photon scattering
to 180◦.

(b) What is the kinetic energy of that electron?
The Compton formula gives us the difference in wavelengths. We must put this in terms of
energy, using E = hf = hc/λ for photons. So

λ1 − λ0 =
hc

E1
− hc

E2

which we can put into the Compton formula

hc

E1
− hc

E0
=

hc

mec2
(1 − cos 180◦)

divide out the hc, use cos 180◦ = −1, and combine the difference of inverse Ei to get

E0 −E1

E0E1
=

2
mec2

E0 −E1 =
2E0E1

mec2

E1(
2E0

mec2
+ 1) = E0

E1 =
E0

1 + 2E0
mec2

=
1

1 + 2
0.511

= 0.20 MeV

and the energy given the electron is E0 −E1 = 1.0− 0.20 = 0.80 MeV
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5. Recall that for the circular orbits of the Bohr model, the kinetic energy is equal to the
magnitude of the binding energy. For a circular orbit the average momentum is 0 and the
spread ∆p = |p|.
(a) Show that the Bohr ground state satisfies the uncertainty principle for position and

momentum.
There are several ways to do this:

i. You can use Bohr’s hypothesis, which says the angular momentum of the ground state is
h̄. Since angular momentum is �L = �r × �p and for a circular orbit, �r and �p are always
perpendicular, then r|p| = h̄ for the ground state. The orbit is centered at 0 with a spread
of r, so we can say ∆x = r, and use ∆p = |p|, so

∆x∆p = h̄ ≥ h̄/2

which is the undertainty principle.
ii. You can use numbers. Since K = −E = 13.6 eV, and since (this is a non-relativistic

problem) pc =
√

2mc2K we get pc =
√

2 · 511 × 103 · 13.6 = 3728 eV and r = aB = 0.05 nm
so c∆p∆x = 186 eV · nm. This is close to h̄c = 197 ev· so ∆p∆x is close to h̄ and greater
than h̄/2. Of course the 186 is no more accurate than the 0.05 and should be exactly 197.

iii. You can use algebra. The kinetic energy is the Ridberg energy = α2mc2/2 and the radius
is aB = h̄c/(αmc2) where α = kee

2/(h̄c) is the fine structure constant. The momentum is
pc =

√
2mc2K = αmc2 Multiplying the radius and pc gives h̄c, since the α and mc2 cancel.

So once again, if we equate ∆x with r and ∆p with p, considering the circular orbit, we
find the uncertainty principle is satisfied for the ground state. Note that any charge or mass
would still work, since they cancel.

(b) Using the dependence of the radius and |p| on n, show that ∆x∆p/n is constant.
All you need is the dependence on n. You know En is proportional to 1/n2 so, following the
connection between En and pn done above, pn is proportional to 1/n. The radius is proportional
to n2. The product of r and p, which we equated to ∆x∆p above, is proportional to n, so
∆x∆p/n is constant. (Since you know the value for n = 1 you know the constant, but that was
not the question.) This illustrates that ground states are near the equality in the uncertainty
principle, whereas excited states get bigger and bigger ∆x∆p as the excitation goes up.
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6. As you should know, visible light has a wavelength around 500 nm.

(a) Compare the wavelength of 1 keV electrons to that of visible light. (I.e. give a ratio or
something, don’t just say one is bigger or smaller than the other.)
The electron is non-relativistic (1 keV is much less than mc2 = 511 keV) so the momentum is
p =

√
2mK and the wavelength is λ = h/p = hc/

√
2mc2K = 1.240/

√
2 · 511 · 1 = 0.039 nm.

Here I converted the usual 1240 eV ·nm to 1.240 keV ·nm to match the units of the denominator.
You could just as well put the mc2 and 1 keV into eV. You have to do one or the other to match
units.
The 1 keV electron wavelength is .039/500 = 4/50000 = 8 × 10−5 that of the visible light. This
is why electron microscopes are needed to look at very small things, and why they work for that
job.

(b) Those 1 keV electrons make x-rays when they hit material.

i. What is the highest energy x-ray they make?
Electrons can convert all their kinetic energy into x-ray energy, so the maximum x-ray energy
is 1 keV.

ii. What is the speed of that x-ray?
X-rays are electromagnetic radiation, so they go c = 3 × 108m/s. An answer of just c is
good enough.

iii. What is the wavelength of that x-ray?
For photons, E = hf = hc/λ so λ = hc/E = 1240/1000 = 1.24 nm. Since the x-ray energy
was specified to 1 significant figure, an answer of 1 nm is acceptable.
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7. A particle of mass m is bound in a finite square well (non-rigid box) in which the potential is
0 for −a/2 < x < a/2 and is U0 for x < −a/2 and x > a/2. There are more than two bound
states. In some place the wave function corresponding to bound state n (with energy En) is
An sinknx+Bn cos knx, in another place it is Cne

αnx and in another place it is Dne
−αnx. αn

and kn are positive, and x = 0 at the middle of the well. (One of An or Bn might be 0 when
the other one isn’t.)

(a) Write down the time independent Schrödinger equation

i. for the region −a/2 < x < a/2
Here the potential is 0 so the Schrödinger equation is

ψ′′
n = −2m

h̄2 Enψn

ii. for the region x < −a/2 and x > a/2
Here the potential is U0 so the Schrödinger equation is

ψ′′
n =

2m
h̄2 (U0 −En)ψn

(b) Show that one of the functions given above is a solution in the appropriate region. (Pick
your favorite one.) A complete answer will include your getting a formula for kn or αn

in terms of natural constants and U0, En, a, m.

In any of the regions you pick the function and you calculate ψ′′
n from ψn. You need to realize

that the ones with α go outside the well, and the ones with k go where −a/2 < x < a/2. You
will find that ψ′′

n = α2
nψn or ψ′′

n = −k2
nψn depending on your region. Putting these into the

Schrödinger equation for the appropriate region will give either

α2
n =

2m
h̄2 (U0 −En)

or
k2

n =
2m
h̄2 En

(c) Sketch

i. the well and indicate which form of the wave function applies in which place.

The letters on the figure indicate which solutions belong in the different regions bounded
by -a/2 and a/2. C corresponds to Cne

αnx, etc.
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ii. Sketch the wavefunctions for the lowest and next to lowest energy. Either sketch
them on top of the well, or use a graph with the same x scale. Make a good sketch,
or identify features of the wave functions that are not clear in your particular sketch.

The curve that does not cross the axis is the ground state and the one that crosses at x = 0
is the first excited state. The ground state is symmetric (even) about x = 0 and the first
excited state is anti-symmetric (odd). They both have curvature toward the axis inside
the well, away from the axis outside, the slopes are equal just before and just after the
boundaries of the well (not well illustrated in the sketch), and the curves are supposed to
approach 0 for large |x|. The first excited state should approach 0 slower than the ground
state, since α is smaller. (This is not well illustrated in my sketch.)

(d) What is the binding energy for a bound state with energy En? (Be careful - En is
measured from the bottom of the well, and U(x) is U0 at large x, unlike the case with
atoms, where we took U(x) to be 0 at large distance.)
The binding energy is just U0 −En, which is the energy that must be supplied to the particle in
state n to bring it to the top of the well.


