Chapter 1 of Tipler & Mosca, sections 6-7 Vectors

- 6. Vector: magnitude and direction. \overrightarrow{A} magnitude $|\overrightarrow{A}|$ or just A $\overrightarrow{A} = \overrightarrow{B}$ means both magnitude and
- 7. General properties.

direction are equal.

- a.) Addition (subtraction)

 examples

 associative: $\overrightarrow{A} + (\overrightarrow{B} + \overrightarrow{C}) = (\overrightarrow{A} + \overrightarrow{B}) + \overrightarrow{C}$
- b.) Multiplication by a scalar
- c.) Components:
 - i) In some direction (along some other vector, for example)
 - ii) Along coordinate axes (illustrate)
- d.) Unit vectors $\hat{A} = \vec{A}/A$. Magnitude is 1, dimensionless unit coordinate vectors, \hat{i} , \hat{j} , \hat{k}
- e.) Given, A_x, A_y, A_z the components, then

$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$

$$\overrightarrow{A}$$
 and \overrightarrow{B} are each 2.00 m in magnitude
 \overrightarrow{A} is parallel to the x-axis and
 \overrightarrow{B} is at 30° to the x-axis
 $\overrightarrow{C} = \overrightarrow{A} + \overrightarrow{B}$

The magnitude of \overrightarrow{C} is
A. 4.15 m

X axis

B. 2.15 m

(Clicker question on vector addition)

Chapter 3 Motion in Two and Three dimensions

- 1. Displacement, Velocity, and Acceleration.
 - a.) Position vector. (tails go at the origin)
 - b.) Displacement vector: $\Delta \hat{r} = \vec{r}_2 \vec{r}_1$ illustrate
 - c.) Velocity vector:

i)
$$\vec{V}_{av} = \frac{\Delta \vec{r}}{\Delta t}$$

which is similar to 1-dim case. Direction carried by $\Delta \hat{r} = \vec{r}_2 - \vec{r}_1$

ii)
$$\vec{V} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$$

which means components are

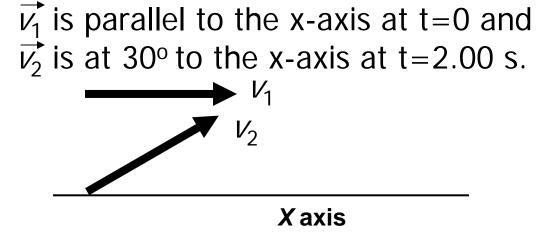
$$V_x = \frac{dx}{dt}, V_y = \frac{dy}{dt}, V_z = \frac{dz}{dt}$$

(often $v_z = 0$ – then we have 2 dim motion)

d.) examples

- e.) Relative velocity $\vec{V}_{pB} = \vec{V}_{pA} + \vec{V}_{AB}$ convention is V_{cd} is velocity of "c" in system "d" -- examples
- f.) Acceleration vectors

$$\vec{a}_{av} = \frac{\Delta \vec{v}}{\Delta t}$$
 average acceleration


and

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$$
 instantaneous accel.

Note that $\Delta \vec{V}$ will have a non-zero value if just the direction of \vec{V} changes. The magnitude does not have to change.

g.) Examples, clicker question

the velocities of a particle at t_1 and t_2 , and $\vec{v_1}$ are each 2.00 m/s in magnitude.

The magnitude of \overrightarrow{a}_{av} is A. 0.00 m/s²

B. 1.04 m/s²

C. 0.52 m/s^2

D. 1.86 m/s^2