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Abstract

A total of 2128 calcitic and phosphatic shells, mainly brachiopods with some conodonts and belemnites, were measured
for their d18O, d13C and 87Srr86Sr values. The dataset covers the Cambrian to Cretaceous time interval. Where possible,

Ž .these samples were collected at high temporal resolution, up to 0.7 Ma one biozone , from the stratotype sections of all
continents but Antarctica and from many sedimentary basins. Paleogeographically, the samples are mostly from paleotropi-

Ž .cal domains. The scanning electron microscopy SEM , petrography, cathodoluminescence and trace element results of the
Ž .studied calcitic shells and the conodont alteration index CAI data of the phosphatic shells are consistent with an excellent

preservation of the ultrastructure of the analyzed material. These datasets are complemented by extensive literature
compilations of Phanerozoic low-Mg calcitic, aragonitic and phosphatic isotope data for analogous skeletons. The oxygen

18 Ž .isotope signal exhibits a long-term increase of d O from a mean value of about y8‰ PDB in the Cambrian to a present
Ž .mean value of about 0‰ PDB . Superimposed on the general trend are shorter-term oscillations with their apexes coincident

with cold episodes and glaciations. The carbon isotope signal shows a similar climb during the Paleozoic, an inflexion in the
Permian, followed by an abrupt drop and subsequent fluctuations around the modern value. The 87Srr86Sr ratios differ from
the earlier published curves in their greater detail and in less dispersion of the data. The means of the observed isotope

87 86 18 13 34 Ž .signals for Srr Sr, d O, d C and the less complete d S sulfate are strongly interrelated at any geologically
Ž .reasonable 1 to 40 Ma time resolution. All correlations are valid at the 95% level of confidence, with the most valid at the

99% level. Factor analysis indicates that the 87Srr86Sr, d18O, d13C and d 34S isotope systems are driven by three factors.
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The first factor links oxygen and strontium isotopic evolution, the second 87Srr86Sr and d34S, and the third one the d13C
and d34S. These three factors explain up to 79% of the total variance. We tentatively identify the first two factors as tectonic,

Ž . Žand the third one as a biologically mediated redox linkage of the sulfur and carbon cycles. On geological timescales G1
. Ž .Ma , we are therefore dealing with a unified exogenic litho-, hydro-, atmo-, biosphere system driven by tectonics via its

Ž .control of bio geochemical cycles. q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Sr isotopic composition of past seawater, as
monitored by marine carbonate shells and rocks, can
be utilized as a proxy parameter for tectonic evolu-
tion of the Earth System, because the 87Srr86Sr
variations reflect principally the waxing and waning

Ž .of Sr input from rivers ‘continental’ flux vs. the
input from the submarine hydrothermal systems
Ž . Ž‘mantle’ flux Faure, 1986; Taylor and Lasaga, this

. 87 86issue . The general trends of Srr Sr variations for
Phanerozoic seawater have been sketched already in

Ž .the pioneering studies of Peterman et al. 1970 ,
Ž . Ž .Veizer and Compston 1974 and Burke et al. 1982 .

The published ‘curve’ of the last authors served
subsequently as a baseline for all follow-up studies.
The last decade, however, witnessed a considerable
advance in instrumental precision, sample prepara-
tion and in better geological constraints, particularly
in stratigraphic assignment of samples. This resulted
in a considerably tighter delineation of the secular
marine isotope trend and opened the stage for utiliza-
tion of Sr isotopes as a correlation and dating tool,
‘isotope stratigraphy’. This stage of research has

Ž .been summarized in DePaolo and Ingram 1985 ,
Ž . Ž . Ž .Elderfield 1986 , Veizer 1989 , McArthur 1994

Ž .and Smalley et al. 1994 . Nevertheless, the utility of
this new tool has been restricted mostly to the Ceno-
zoic, because of the steep and well-defined rise in
marine 87Srr86Sr ratio. Apart from the steep slope,
the major reason for delineation of such a well-de-
fined trend has been the fact that this young portion
of the geologic record has a relatively well-resolved
and detailed stratigraphy and that sediments of this
age contain shells that were only marginally affected
by the vicissitudes of diagenesis.
In theory, it should be possible to define similar

well-constrained trends also for other Phanerozoic

intervals with equally steep slopes and thus extend
the utility of the ‘isotope stratigraphy’ into the

Ž .Mesozoic and Paleozoic Veizer et al., 1997a . The
constraining factors in achieving this goal are not so
much the instrumental capabilities, because for many
laboratories intra- and interlaboratory reproducibility

y6 Žroutinely falls within "25=10 limits Thirwall,
.1991; McArthur, 1994 , but the preservation and

resolution of the geologic record.
13 ŽThe d C of ancient oceans e.g., Clayton and

Degens, 1959; Schidlowski et al., 1975; Veizer and
.Hoefs, 1976 was for a long time regarded as essen-

tially invariant, but with a considerable noise, around
0‰ PDB. Only in the 1980s was it realized that this
noise contains a real oscillating secular signal
ŽScholle and Arthur, 1980; Veizer et al., 1980; Arthur

.et al., 1985; Shackleton, 1985 . In contrast to the
below-discussed oxygen isotopes, the primary nature
of the d13C secular trend has not been seri-carbonate
ously challenged. The reason is that diagenetic re-
crystallization of carbonates is accomplished in a
system with a low waterrrock ratio for carbon, and a

Žhigh ratio for oxygen Banner and Hanson, 1990;
.Banner, 1995; Jacobsen and Kaufman, this issue .

Diagenetic stabilization of carbonates therefore re-
sults in transposition of carbon from a precursor to a
successor mineral phase.
The above oscillations in the d13C trendcarbonate

are being increasingly utilized for correlation and
Žisotope stratigraphy e.g., Knoll et al., 1986; Derry et

.al., 1992 . This tool, however, is subject to addi-
tional limitations if compared to Sr isotopes. The
major difference arises from the fact that d13Ccarbonate
at any given time shows a considerable spread of
values due to spatial variability of oceanic d13CÝCO2
Ž .e.g., Kroopnick, 1985 and due to biological factors

Žof shell formation McConnaughey and Whelan,
.1997 . The complications arise not so much during
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logging of a single well or a profile, but can become
considerable if unrelated sequences or wells are
compared. Nonetheless, large peaks can serve as
correlation markers, particularly in the Precambrian
Ž .Kaufman et al., 1992 . In addition, the secular
d13C trend is increasingly utilized as a proxycarbonate
for determining oceanic paleoproductivityrpreserva-
tion patterns, ancient pCO and pO states, and2 2

Žsimilar paleoenvironmental phenomena Berner et
al., 1983; Berner, 1994; Kump and Arthur, this

.issue .
The 18Or16O composition of ancient oceans is

one of the perennial and most controversial issues of
isotope geochemistry. Commencing with the nascent
stages of isotope geochemistry, it has been realized
Ž .Baertschi, 1957; Clayton and Degens, 1959 that
oxygen isotopic composition of carbonates becomes
progressively more depleted in 18O with increasing

Žage of the rocks. This trend for carbonates and other
.chemical marine sediments has been confirmed by

Ž .many studies e.g., Veizer and Hoefs, 1976 and its
validity is not disputed. It is the implications of such
observations that result in a sharp division within the
scientific community. If essentially a primary fea-
ture, the implications could be one or all of the

Ž . 18following: 1 seawater d O must have changed in
Žthe course of the Phanerozoic e.g., Weber, 1965;

.Perry and Tan, 1972; Hudson and Anderson, 1989 ;
Ž .2 the early oceans must have been much warmer

Žthan today, up to ;708C Knauth and Epstein,
1976; Kolodny and Epstein, 1976; Karhu and Ep-

. Ž .stein, 1986 ; or 3 they were stratified, with deep
waters being generated by sinking of salty brines

Žfrom extensive evaporation at low latitudes Brass et
.al., 1982; Railsback, 1990 . Objections to alternative

Ž .1 arise from studies of the oceanic crust and its
Ž .ancient counterparts Gregory and Taylor, 1981 and

Žfrom model considerations Muehlenbachs and Clay-
.ton, 1976; Gregory, 1991; Muehlenbachs, 1998 ,

both claiming that the d18O of ocean water is, and
has been, buffered at ;0‰ SMOW by rockrwater
interactions in hydrothermal cells at oceanic ridges.

Ž .For alternative 2 , the persistence of essentially the
same faunal assemblages and the recurrence of ice
ages throughout the Phanerozoic are difficult to rec-

Žoncile with the advocated warm temperatures Veizer
. Ž .et al., 1986 . Finally, for alternative 3 , the implied

permanent saline stratification would be difficult to

sustain and, even if sustainable, it could account for
no more than ;1.5‰ 18O depletion in the near-

Ž .surface oceanic layer Railsback, 1990 .
The above considerations, and the observation

that advancing diagenetic recrystallization of carbon-
Ž . 18ate and other phases results in O depletion, either

due to involvement of meteoric waters or to elevated
temperatures, led one group of researchers to argue
that the d18O secular trend is essentially a diagenetic

Žfeature Degens and Epstein, 1962; Killingley, 1983;
.Land, 1995 . Resolution of this secondary vs. pri-

mary dilemma is of utmost importance, because the
d18O could potentially serve as a powerful paleo-
ceanographic tracer for the entire Phanerozoic.
In this contribution, due to space restrictions, we

concentrate solely on documentation of the trends in
order to make the datasets available to the scientific
community. Their interpretations and implications
for the d13C are discussed by other authors in this

Žvolume Hayes et al., this issue; Kump and Arthur,
. 18this issue . For the d O, the resolution of the pri-

mary vs. secondary nature of the Phanerozoic trend
is a precondition for any argumentation dealing with
consequences. We shall therefore concentrate on this
issue only, leaving the model implications for future
consideration.
Because of the potential utility of 87Srr86Sr, d13C

and d18O secular trends for resolution of paleoceano-
graphic, paleoecological and stratigraphic questions,
it is essential to define these trends as tightly as
possible. Here, we introduce a new set of paleosea-
water curves for the Phanerozoic. In order to mini-
mize the impact of diagenetic resetting of the signal,
we have concentrated on material that is relatively
resistant to diagenetic alteration. Similarly, in order
to attain high resolution, we resampled ‘complete’
and well-dated sequences. Nevertheless, fulfillment
of these two requirements, in particular the temporal
assignment of samples, is a complex task that re-
quires some introductory discussion.

2. Completeness of the sedimentary record and
isotopic ages

Any given stratigraphic section only intermittently
Žrecords the passage of geological time Dingus,

.1984 . On a global scale, the volume of sedimentary
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rocks decreases with age because the record becomes
progressively less complete with time. Within any
sedimentary sequence, there are hiatuses which rep-
resent periods of non-deposition, erosion andror
diagenesis. Stratigraphic sections spanning greater
temporal intervals have a greater opportunity of in-
corporating more hiatuses and hiatuses spanning

Ž .longer periods of time Sadler, 1981; Korvin, 1992 .
Determining the stratigraphic position and duration
of a hiatus within a section is often problematic. The
end result is a progressive decrease in the complete-
ness of the stratigraphic record with increasing age.
In general, sequences often have erosional or

non-depositional contacts which are difficult to iden-
tify from lithological parameters alone. In these situ-
ations, biostratigraphy, absolute dating and magne-
tostratigraphy are often utilized. Unfortunately, each
method has its limitations. Presently, the highest
resolution can be achieved with biostratigraphy, with
a resolution limit rarely better than 0.5 Ma and more
often on the order of 1 Ma or more. As a result, the
upper limit for using this method for hiatus identifi-
cation cannot be better than 0.5 Ma. In addition,
bioturbation can effectively homogenize sediments
in the upper 10–15 cm, rendering any stratigraphic

Žmethod meaningless at scales less than 15 cm Anders
.et al., 1987 . If sediment accumulation is slow, then

the effect of bioturbation on the resolution may
become geologically significant.
Stratigraphers define a complete section as one

which has no gaps larger than each time unit of a
Ž .specific scale Anders et al., 1987 . As the resolution

Ž .improves corresponding to shorter time scales , there
is a corresponding decrease in the perceived com-
pleteness of the section. Therefore, improved sam-
pling accuracy will result in an overall decrease in
the perceived completeness of the stratigraphic sec-

Ž .tion Schindel, 1982; Dingus, 1984 . On average, it
is estimated that only 1r30th of the elapsed time is

Žrepresented by sediments Algeo and Wilkinson,
.1988; Miall, 1994 .

The above constraints are compounded by prob-
lems with assignment of ‘absolute’, or more cor-
rectly ‘isotopic’, ages to particular samples. In order
to enable comparison with other datasets, we consis-

Ž .tently utilized the time scale of Harland et al. 1990 ,
despite the fact that many of these ‘ages’, including
the commencement of the Phanerozoic at 570 Ma

Ž .ago rather than 543 Ma; Bowring and Erwin, 1998 ,
are today not accepted anymore. The uncertainties in
‘age’ estimates for epochs and stages are usually
several million years, larger than the entire duration
of many stages. For example, the estimated duration
of the Eifelian of ;4 Ma is bracketed by isotopic

Žages of 386"5 to 382q9ry14 Ma Harland et
.al., 1990 . This interval encompasses some five con-

odont biozones, each arbitrarily assigned an isotopic
age by linear extrapolation between these two esti-
mates that have large experimental errors.
Because of the above complications, we have

concentrated on sedimentary sequences that were as
complete as possible, preferably stratotypes, provid-

Ž .ing they contained suitable material shells for iso-
topic studies. The correlation of samples from differ-

Žent localities was based on biostratigraphy bio-
.zones and not on ‘isotopic ages’. The relative ‘age’

within the same sequence and biozone was based on
stratigraphic superposition. Unfortunately, when
comparing distant Paleozoic and Mesozoic se-
quences, the best that we could accomplish was a
correlation to a biozone resolution. This will be
important when discussing higher level oscillations
in the isotope signal.

3. Sample selection

In order to constrain as much as possible post-de-
positional alteration of the isotope signal, we have
concentrated on samples that are relatively resistant
to diagenesis. The preferred material is the low-Mg
calcite of marine skeletons, such as brachiopods,
belemnites and foraminifera. Keeping in mind that
the Cenozoic portion of the isotope record has been
extensively studied, chiefly due to DSDP, we have
concentrated on the Paleozoic and Mesozoic. These
left brachiopods and belemnites as the only abundant
and stratigraphically widespread fossils with low-Mg
calcitic skeletons. Furthermore, for brachiopods, we

Žhave utilized only the so called ‘secondary’ i.e.,
.interior layer, because its elongated calcitic fibers

showed the highest degree of preservation, up to
sub-micron levels. The details of our approach and
examples of the exceptional degree of preservation
of many shells have been documented in Diener et
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Ž . Ž .al. 1996 , Veizer et al. 1997a,b , Azmy et al.
Ž . Ž .1998 and Bruckschen et al. 1999 . For the Meso-
zoic belemnites, the approach has been similar, ex-
cept that the samples were drilled within a single
‘lamina’ of the rostrum, parallel to its elongation
Ž .Podlaha et al., 1998 .
For Sr isotopes, in the initial stages, we have

concentrated also on conodonts, believing that be-
cause of their superior stratigraphic resolution and
the high Sr content of their phosphatic skeletons,
they may yield a 87Srr86Sr curve for the Phanero-
zoic seawater with the highest temporal resolution
attainable. Comparison with brachiopod data showed,
however, that conodonts, even at a conodont alter-

Ž . 87 86ation index CAI as low as 1.5, had Srr Sr ratios

that were at best comparable to coeval brachiopods,
but mostly the measurements were more radiogenic
Ž .Ebneth et al., 1997; Veizer et al., 1997a . These,
and the textural and proton-induced X-ray emission
Ž . Ž .PIXE trace element studies Bruhn et al., 1997 ,
showed that conodonts exchanged about 1r3 of their
Sr with the surrounding rock matrix. In suitable
matrix, such as pure carbonates, conodonts may still
retain their near-original 87Srr86Sr values, but mostly

y5 Žthe values are ;5=10 more radiogenic Ebneth
.et al., 1997 . Because of these reasons, we have

discontinued conodont studies, except for the time
intervals where the low-Mg calcitic fossils were rare
or absent, such as the Cambrian and the early Trias-
sic.

Ž . Ž .Fig. 1. The SEM photos of representative brachiopods. Note the excellent preservation of the secondary shell layer from Azmy, 1996 . a
Ž .Isorthis amplificata B27; Wenlock, Much Wenlock, UK shell, with punctae filled by secondary calcite. The punctae calcite has intensive

yellowish cathodoluminescence, as opposed to no or only intrinsic blue luminescence of the shell. The isotopic and chemical characteristics
18 13 Ž . Ž . Ž .of the shell are the following: d Osy5.50‰, d Csq0.39‰, Mns307 ppm, Srs1934 ppm. b As 3a at higher magnification. c

Ž . 18 13 Ž .Delthyris eleÕata EK 38-7; Pridoli, Ohesaare Cliff, Estonia : d Osy5.50‰, d Csy0.50‰, Mns104 ppm, Srs1328 ppm. d As
Ž .3c at higher magnification.
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Ž . Ž .Fig. 2. Histograms of Sr ns1370 and Mn ns1267 concentra-
tions in the studied brachiopods and belemnites.

The samples were screened for their degree of
Žpreservation by optical transmitted light, cathodolu-

.minescence and scanning electron microscopy, SEM
techniques. These have been documented in Bruhn et

Ž . Ž .al. 1995 and Bruckschen et al. 1995a,b . Fig. 1
demonstrates an example of excellent preservation of
textures on sub-micron scale. This optical screening
was complemented by trace element evaluation by

Žwet chemical techniques inductively coupled plasma
w xatomic emission spectroscopy ICP-AES , atomic ab-

w x.sorption spectroscopy AAS on aliquots remaining
after phosphoric acid liberation of CO for stable2

Ž .isotope measurements Coleman et al., 1989 and by
PIXE spot analyses on thin sections. Based on the
wet chemical approach, some 2r3 of all studied
samples have Sr and Mn concentrations comparable

Ž .to modern low-Mg calcitic shells Fig. 2 . The re-
maining 1r3, mostly with Sr content -800 ppm,
may or may not have suffered some diagenetic loss
of Sr, since concentrations as low as 200 ppm have

Žbeen reported for modern brachiopods Morrison and
.Brand, 1986; Brand, 1989b . Note also that recrystal-

lization, unless at exceptionally high waterrrock ra-
tios, does not necessarily result in resetting of
87Srr86Sr or d13C values. For carbon, this is because
of the earlier-discussed low waterrrock ratios of the
respective diagenetic systems. For strontium, due to

Ž .the fact that D calcite is -1, recrystallizationSr
happens in a partially open system buffered by the

Ž .dissolving carbonate phase Veizer, 1983 . Alterna-
tively, the lower Sr concentrations may be, in part,
due to inclusion of distinct small domains of sec-
ondary calcites, and not to partial recrystallization,
leaving the bulk of the shell unaltered. The presence
of such secondary calcites can usually be detected by

Ž .optical means Fig. 3 , particularly cathodolumines-
cence, and these calcites have also distinctive chemi-

Ž . Žcal Table 1 and isotopic signatures Bruckschen et
.al., 1995a; Bruhn et al., 1995 .

4. Samples

The present study is based on several thousand
samples of Cambrian to Cretaceous ages. These were

Ž .collected in Canada Anticosti Island, Ontario , USA
ŽUtah, Oklahoma, Texas, Ohio, Kentucky, Missouri,

.New York , Ireland, England, Wales, Spain, Italy,
ŽBelgium, Germany, Poland, Norway including

Ž . Ž .Fig. 3. Top Cathodoluminescence photomicrograph of a Carboniferous punctate brachiopod sample PB 192a . Note the bright yellow
Ž .luminescence of the punctae that are filled by diagenetic calcite. Bottom PIXE elemental map of the dark square in the top figure. Step

Ž . Ž .size 10 mm. Note that the punctae are typified by Sr depletions light domains and simultaneous Mn enrichments dark domains . The trace
element data are in Table 1. Punctate brachiopods, except for demonstration purposes, were avoided in the present study. Modified from

Ž . Ž .Bruhn 1995 and Bruckschen et al. 1995a .
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Table 1
Ž .The PIXE trace element concentrations for a Carboniferous punctate brachiopod sample PB 192a

Mn Fe Sr

Shell Punctae Shell Punctae Shell Punctae

33 1810 40 733 1042 518
20 3699 35 9261 977 217
27 2043 36 722 969 379
36 5040 73 1069 953 223

Mean 29 3148 48 2946 985 334
s 8 1501 22 4833 12 92

. Ž .Svarlbad , Sweden including Gotland , Estonia,
Ž .Latvia, Lithuania, Ukraine Donetsk basin, Podolia ,

ŽAustria, Slovakia, Hungary, Russia Moscow basin,
.St. Petersburg area, Urals, western Siberia , Mo-

87 86 ŽFig. 4. Srr Sr variations for the Phanerozoic based on 4055 samples of brachiopods ‘secondary’ layer only for the new BochumrOt-
.tawa measurements , belemnites and conodonts, and nine samples of micritic matrix. Normalized to NBS 987 of 0.710240. The literature

Ž . Ž . Ž .data foraminifera, belemnites and conodonts are from the following sources: Peterman et al. 1970 , Dash and Biscaye 1971 , Veizer and
Ž . Ž . Ž . Ž . Ž . Ž .Compston 1974 , Brass 1976 , DePaolo and Ingram 1985 , Koepnick et al. 1985 , Hess et al. 1986, 1989 , Popp et al. 1986c ,

Ž . Ž . Ž . Ž . Ž .McKenzie et al. 1988, 1993 , Hodell et al. 1989, 1990, 1991 , Brand 1991 , Martin and McDougall 1991, 1995 , Bertram et al. 1992 ,
Ž . Ž . Ž . Ž . Ž .Dia et al. 1992 , Barrera et al. 1993 , Kurschner et al. 1993 , Whittaker and Kyser 1993 , Banner and Kaufman 1994 , Cummins and¨
Ž . Ž . Ž . Ž . Ž . Ž .Elderfield 1994 , Denison et al. 1994 , Hodell and Woodruff 1994 , McArthur et al. 1994 , Oslick et al. 1994 , Quinn et al. 1994 ,
Ž . Ž . Ž . Ž . Ž . Ž .Jones et al. 1994a,b , Chaisi and Schmitz 1995 , Farrell et al. 1995 , Ruppel et al. 1996 , Wenzel 1997 , Qing et al. 1998 .
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Žrocco, south China, Australia Queensland, Northern
.Territory and New Zealand. They have been col-

Ž .lected assembled and described by the following
Ž .researchers and publications: Cambrian S. Ebneth ,

Ž . ŽOrdovician G.A.F. Carden , Silurian Azmy, 1996;
. ŽAzmy et al., 1998, 1999 , Devonian Diener, 1991;

Ebneth, 1991; Pawellek, 1991; Fauville, 1995; Golks,
1995; Ala, 1996; Diener et al., 1996; Ebneth et al.,

. Ž1997 , Carboniferous Bruckschen et al., 1995b,
.1999; Bruckschen and Veizer, 1997 , Permian

Ž . Ž .Jasper, 1999 , Triassic Korte, 1999 and Jurassicr
ŽCretaceous Podlaha, 1995; Podlaha et al., 1998,

.Podlaha et al., this issue . Judging from paleogeo-
Ž .graphic reconstructions of Scotese et al. 1994 , most

Žof these samples originate from tropical regions 308N
.to 308S of the paleoceans, with few from higher

paleolatitudes. From this collection, some 1500 sam-
Žples of brachiopods and belemnites and additional

.conodonts have been selected for further Sr, O
and C isotope studies and the details of their des-
criptions, including chemistry, isotopes, geology
and location, are available in the above publi-
cations or in the summary tables posted on the Web

site: http:rrwww-ep.es.llnl.govrgermrevolution.
html or http:rrwww.science.uottawa.cargeologyr
isotope datar.y

5. Phanerozoic 87Srrrrrr86Sr trend

The summary of Sr isotope data for Phanerozoic
Ž .seawater Fig. 4 is based solely on measurements on

fossils. The Cenozoic and late Cretaceous part is
from the literature and based chiefly on foraminifera.
The remaining literature data, and all of Bochumr
Ottawa measurements, are based on brachiopods,
belemnites and conodonts. The sole exceptions are

Ž .the matrix micrite samples for the early Cambrian
that were incorporated because of the lack of suitable
fossils. The ‘curve’ resembles the one by Burke et al.
Ž .1982 , but it differs in detail and is more tightly
constrained. Where larger spread of data exists, such
as the radiogenic mid-Permian Chinese samples
Ž .Jasper, 1999 , it is dealt with in the publication
describing these particular periods. However, the

87 86 Ž .Fig. 5. Srr Sr variations during the Devonian new BochumrOttawa data only .
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Ž .clumping of data cf. Devonian and Carboniferous
is mostly a reflection of a large number of measure-
ments, with higher-order oscillations compressed

Žalong the temporal axis cf. Bruckschen et al., 1995b,
.1999; Bruckschen and Veizer, 1997 .

Ž .Taking the Devonian as an example Fig. 5 , the
higher-order oscillations, based on 384 samples, are
well-illustrated. The secular trend shows a continu-
ous decline through the Lower Devonian, a plateau
in the Middle Devonian, a rise through the Frasnian
and another plateau in the Upper Frasnian and Fame-
nian. This figure also illustrates that conodonts are
usually somewhat more radiogenic than coeval bra-
chiopods. Furthermore, even at this resolution, some
clumping still persists, such as at the EmsianrEifelian
and FrasnianrFamenian transitions. Again, the major

culprit is the presence of still higher-order fluctua-
tions in a compressed time scale. For the Middle

Ž .Devonian, this was illustrated in Diener et al. 1996
Ž .their Fig. 6 , where it was also pointed out that the
geological reproducibility of the Sr isotope pattern in
profiles only several kilometers apart was no better
than 5=10y5. Thus, only the oscillations in excess
of this range could be resolvable on regional to
global scales.
Another constraining issue is the problem of cor-

relations within a single biozone. As discussed in
Ž . Ž .Veizer et al. 1997a their Fig. 8 , the scatter of

87Srr86Sr values at the FrasnianrFamenian transi-
tion, the Kellwasser ‘event’, results from real oscilla-
tions within one or two biozones. Yet, on larger
regional or global scales, it is difficult to match these

Fig. 6. 87Srr86Sr variations during the Devonian based on conodont biozones. Explanations: circlesmean; boxs"1s ; vertical
linesminimum and maximum. The 2s in the lower right corner is an average 2s for the NBS 987 standard. Note that only brachiopods

Žare included in this figure. The biozones are the following Weddige, 1977, 1988; Carls, 1988; Sandberg et al., 1989; Ziegler and Sandberg,
.1990 : 1 — woschmidti, 2 — postwoschmidti, 3 — pesaÕis, 4 — sulcatus, 5 — kindleri, 6 — pirinea, 7 — deniscens, 8 — gronbergi, 9

— laticostatus, 10 — serotinus, 11 — patulus, 12 — partitus, 13 — costatus, 14 — australis, 15 — kockelianus, 16 — esensis
Ž .arkonensis, obliquimarginalus, bipecatus , 17 — hemiansatus, 18 — Õarcus, 19 — hermani — cristatus, 20 — disparitis, 21 —
falsoÕialis, 22 — transitans, 23 — punctata, 24 — hassi, 25 — jamieae, 26 — rhenana, 27 — linguiformis, 28 — triangularis, 29 —
crepida, 30 — rhomboidea, 31 — marginifera, 32 — trachytera, 33 — postera, 34 — expansa, 35 — presulcata.
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wiggles in different profiles. In effect, one is limited
by constraints of biostratigraphy and the matching is
in the term of biozones. This is not to say that some
of the observed 87Srr86Sr variations may not be a
result of undetected post-depositional alteration, but
a portion of these variations is real. It is therefore
difficult to claim some specific 87Srr86Sr value for a
given biozone. The alternatives can rely on either
selecting the least radiogenic value or accepting all
‘good’ data as representative of that biozone. We
prefer the second approach as more representative of
the real situation. We therefore plot the mean, the 2s
range and the total range of values for each of the 35

Ž .Devonian conodont biozones Fig. 6 . The Phanero-
zoic 87Srr86Sr marine trend based on the above
principles is, in our view, a more realistic reflection
of the natural situation and as such should be con-
structed separately for each period, not only for the

Ž .Devonian or Silurian Azmy et al., 1999 .

6. Correlation potential

Bearing in mind the above qualifications, Sr iso-
topes can serve as a useful complementary correla-
tion tool, particularly for sequences where the bios-
tratigraphic approach is of little value, due either to

the dearth of fossils or to their limited stratigraphic
utility. Nevertheless, the technique can lead to im-
proved correlations even for sequences with good

Ž .biostratigraphic control. Azmy et al. 1999 demon-
strated that for the Silurian, the 87Srr86Sr ratio en-
ables stratigraphic assignment of samples from inde-
pendent sets to within "1 graptolite biozones. This
is no minor accomplishment considering the diffi-
culty of correlation for profiles with differing sedi-
mentation rates and taking into account the uncer-
tainty of the ‘first and last appearance’ of a given
‘Leitfossil’ in the sedimentary record. The issue can
be illustrated by the present study of the Givetianr
Frasnian transition in the Eifel Mountains of Ger-
many. These well-studied sections, in close proxim-
ity to the Belgian stratotypes, have a well-established

Ž .biostratigraphy Weddige, 1977; Struve, 1982 . Un-
fortunately, the GivetianrFrasnian transition is
strongly dolomitized and it was necessary to sample
the coeval sections at the Teerstrassenbau Wahl-
heimrFriesenrath quarry in Aachen and at the tunnel

Ž .near Behringhausen, east of the Rhine Ostsauerland .
87 86 Ž .The measured Srr Sr values Fig. 7 define a

rising trend of ;3=10y4 in about 4 Ma that spans
Ž .the gap between the Õarcus No. 18 and rhenana

Ž .No. 26 biozones in the Eifel. In detail, however, it
appears that the steepest rise in the curve, of about

Fig. 7. 87Srr86Sr trend at the GivetianrFrasnian transition. Conodont biozones as in Fig. 6.
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y4 Ž1=10 in F1 Ma, appears in the falsioÕalis No.
.21 conodont biozone in Aachen and in the transi-

Ž .tans No. 22 biozone in Behringhausen. The critical
Žportion of the profile in Aachen is at its top Reis-

. Ž .sner, 1990 and it was assigned to the lower assy-
metricus biozone in the older stratigraphic assign-

Ž .ment Ziegler, 1962 that encompassed the present
falsioÕalis and transitans biozones. If so, that por-
tion of the Aachen profile that contained the bra-
chiopods measured for 87Srr86Sr should perhaps be

Ž .assigned to the transitans biozone No. 22 , and be
correlative with the Behringhausen.
A third approach of utilizing Sr isotopes for corre-

lation purposes is based on inflexions in the trend
Ž .McArthur, 1994; Azmy et al., 1999 . The higher-
order oscillations are not necessarily reproducible,
particularly in their amplitude. This is because the
sedimentary sequences are not an unbroken recorder
of time and the 87Srr86Sr evolutionary trend of

seawater can thus be truncated at any time prior to
reaching the apex of an oscillation. An inflexion, on
the other hand, can be recognized even if some
corresponding strata are missing. Note that unrecog-
nized hiatuses may appear also as abrupt ‘jumps’ in

Žthe strontium isotope trend cf. Diener et al., 1996,
.their Fig. 7 .

7. Phanerozoic d13C trend

The secular Phanerozoic trends based on the new
Ž .BochumrOttawa dataset Fig. 8 or on the compila-

Ž .tion of literature data Fig. 9 resemble each other in
terms of their overall shape and in the considerable
spread of values. As for Sr isotopes, some of this
scatter is due to higher-order natural oscillations
clumped together by compressed time scale. This is
particularly the case for the literature dataset with its
much poorer temporal resolution. Additional scatter

13 Ž . Ž .Fig. 8. Phanerozoic d C trend based on 1564 brachiopod secondary layer and belemnite laminae pelucidae measurements at Bochum
Ž . Ž .and Ottawa. Three Triassic samples two corals and one bivalve from Cassian Beds and Kossener Schichten Alps are still preserved as¨

aragonite.
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13 Ž .Fig. 9. Phanerozoic d C trend compiled from 3918 measurements for LMC brachiopods, belemnites, oysters, foraminifera and 96
Ž . Ž . Ž .measurements for A mollusc shells. The sources of the data are the following: Compston 1960 , Douglas and Savin 1971, 1973 , Veizer

Ž . Ž . Ž . Ž . Ž . Ž .and Hoefs 1976 , Brand and Veizer 1981 , Popp et al. 1986a,b , Veizer et al. 1986 , Miller et al. 1987 , Adlis et al. 1988 , Brand
Ž . Ž . Ž . Ž . Ž . Ž .1989b , Delaney et al. 1989 , Rush and Chafetz 1990 , Grossman et al. 1991, 1993 , Middleton et al. 1991 , Jones 1992 , Wadleigh and

Ž . Ž . Ž . Ž . Ž . Ž .Veizer 1992 , Brand and Legrand-Blain 1993 , Lavoie 1993 , Anderson et al. 1994 , Qing and Veizer 1994 , Carden 1995 , Carpenter
Ž . Ž . Ž . Ž . Ž . Ž .and Lohmann 1995 , Mii 1996 , Rao 1996 , Samtleben et al. 1996 , Wenzel and Joachimski 1996 , James et al. 1997 , Mii et al.

Ž .1997 .

is due to oceanographic and biological factors, men-
tioned already in the introductory part, and well-pre-

Ž .served ancient aragonitic Anderson et al., 1994 as
Ž .well as modern calcitic representatives Fig. 9 are

no exception to this pattern. Both sets of data, as
well as the secular d13C curve based on wholecarbonate

Ž .rocks Veizer et al., 1980; Lindh, 1983 , show a
general increase in d13C throughout the Paleozoic,
followed by an abrupt decline and subsequent oscil-
lations around the present-day value in the course of
the Mesozoic and Cenozoic. Because of this coher-

Žence, we feel justified in pooling both datasets Figs.
.8 and 9 in order to generate a secular trend for the

Ž .entire Phanerozoic Fig. 10 . The running mean based
on this combined set was calculated for 5 Ma incre-

mental shifts, because this is the realistic resolution
for global biostratigraphic correlations and for our
combined dataset. The bands around this mean incor-
porate 68 and 95% of all measured samples, respec-
tively. Note also that superimposed on the overall
trend are pronounced, but somewhat dampened due
to the 20 Ma window, second- and higher-order
oscillations. Considering the global nature of the
database, with samples originating from five conti-
nents and a multitude of sedimentary basins, the
observed peaks are likely of global significance. An
exception may or may not be the Aptian peak at
;115 Ma that is based on a small number of

Ž .measurements cf. Podlaha et al., 1998 . It is likely
that even many of the shorter-term peaks may still be
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Fig. 10. Phanerozoic d13C trend for combined BochumrOttawa and literature data for LMC shells. The running mean is based on 20 Ma
Ž .window and 5 Ma forward step. The shaded areas around the running mean include the 68% "1s for a strictly Gaussian distribution and

Ž .95% "2s of all data.

of global significance, as will be discussed later for
the terminal Ordovician.

8. Phanerozoic d18O trend

In analogy to carbon isotopes, the d18O trends for
Ž .the BochumrOttawa Fig. 11 and the literature

Ž .datasets Fig. 12 overlap, including their similarities
Žin the second-order structure e.g., the SilurianrDe-

.vonian dip followed by Carboniferous rise . We
therefore feel justified in combining them into a

Ž .general Phanerozoic trend Fig. 13 . Several features
are immediately apparent from this presentation.

Ž . 181 The data define a trend of increasing d O
values, from about y8‰ at the onset of the
Phanerozoic to about 0‰ at present.

Ž . 132 As for the d C, the trend is not a linear
feature, but a band. Note, however, that the observed

d18O variations in modern tropical brachiopods at
Žshelf depths are ;4‰ Carpenter and Lohmann,

.1995; Bruckschen et al., 1999 and for the specimens
Žfrom temperate climates they span about 8‰ Fig.

. 1812 . A similar range of d O values was observed by
Ž .Anderson et al. 1994 for ancient belemnites and

molluscs, the latter still preserved as pure aragonite
Ž .Fig. 13 , within a single member of the Jurassic
Oxford Clay Formation. From this perspective, it is
indeed noteworthy that the collections of fossils from
any one biozone, each representing populations with
a much larger temporal and spatial range than the
modern one, do not show a markedly larger disper-

18 Ž . 18sion of d O values Fig. 13 . The existing O
depleted outliers in the Carboniferous and Permian
Ž .see Bruckschen et al., 1999 for further discussion
represent only ;1% of the total population, thus
extending somewhat the lower range of the 95%
limit. Such outliers have only a negligible impact on
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18 Ž . Ž .Fig. 11. Phanerozoic d O trend based on 1654 brachiopod secondary layer and belemnite laminae pellucidae measurements at Bochum
Ž .and Ottawa. Three Triassic mollusc samples are still preserved as aragonite see Fig. 8 .

the mean, the 2s range, or the upper 95% boundary
of the band. The latter boundary is sharp, with

Ž .almost no samples above it Figs. 11 and 12 . Conse-
quently, even an arbitrary retention of only the
‘heaviest’ values would not invalidate the secular
Phanerozoic trend.

Ž . Ž .3 Statistical treatment of the data Fig. 13
suggests an existence of second-order oscillations
with a frequency of ;150 Ma, their apexes coinci-
dent with cold intervals and major glaciations. Ad-
vancing global cooling, intermittently compounded
by generation of ice caps, could have been the
principal reasons for the observed 18O enrichments.

Ž .4 The three Carboniferous molluscs entombed in
asphalt and still well-preserved as nacreous aragonite
Ž .Brand, 1989a , as well as the 122 Jurassic and

ŽTriassic aragonitic molluscs Anderson et al., 1994;
.Korte, 1999 , all plot well within the main trend

Ž .Fig. 13 .

All the above points will be of importance for
discussion of the primary vs. secondary nature of the
d18O Phanerozoic trend.

9. Correlation of oxygen and carbon isotopes

Ž .The crossplots of all Phanerozoic data Fig. 14
show the relationships of d18O and d13C for the
entire Phanerozoic. Covariant d18Ord13C trends,
such as those of the Ordovician, Silurian, Permian or
Triassic, are often interpreted as an indicator of
diagenetic resetting due to 18O and 13C depletion in

Ž .altered samples e.g., Bathurst, 1975 . While post-
depositional resetting, particularly in diagenetic sys-
tems dominated by bicarbonate generated from soil
CO , can indeed generate such trends, their exis-2
tence is not an a priori proof of diagenetic alteration.
Modern shells, almost as a rule, display such positive
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18 Ž .Fig. 12. Phanerozoic d O trend of compiled 3969 measurements for LMC shells brachiopods, belemnites, oysters, foraminifera and 122
Ž .Carboniferous and Jurassic aragonitic mollusc shells Brand, 1989a; Anderson et al., 1994 , the latter listed in literature as 100% aragonite.

Ž .The sources of the data are as in Fig. 9 and Lowenstam 1961 .

covariance, principally due to isotope fractionation
Žeffects in the process of shell secretion McCon-

.naughey and Whelan, 1997 . The pattern in the
Ž .diagenetically unaffected Quaternary cluster Fig. 14

confirms this assertion.
Another reason for the covariance, particularly

during the Paleozoic, is the fact that both isotopes
show a general secular increase with decreasing age.
The Paleozoic cluster represents, therefore, with large
degrees of overlap, a trend from the isotopically
depleted Cambrian to the enriched Permian. In de-
tail, the covariance is particularly pronounced for
periods of fast secular change, such as the Ordovi-
cian. Note, however, that the patterns of this
d18Ord13C covariance shift toward positive d18O
values with decreasing age. The spread of d13C
values, on the other hand, remains relatively invari-
ant.

In the late Paleozoic clusters, a number of sam-
ples fall outside the general covariance domain due
to excessively negative d18O values. These samples,
mostly of Carboniferous age, are the same that plot
as 18O depleted outliers in the d18O secular trend
Ž .Fig. 13 . They originate mostly from the Donetsk
Basin of the Ukraine and are further discussed in

Ž .Bruckschen et al. 1999 .

10. Primary or secondary trends

The primary nature of the d13C secular trend, at
least in terms of its major features, is no longer
disputed, but the issue is far from settled for the
18 Ž .d O cf. Hoefs, 1997 . Five lines of argumentation
are pertinent to this issue: textural, geological, min-
eralogical, chemical and isotopic. We shall discuss
them in this order.
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Fig. 13. Phanerozoic d18O trend for BochumrOttawa and literature data for LMC shells. Aragonite specimens as in Figs. 11 and 12. Note
that benthic foraminifera are excluded from this figure, because they may not represent ecological analogues to ancient brachiopods and

Ž .belemnites. Glaciations and cold times after Frakes et al. 1992 . Further explanations as in Fig. 10.

Starting with the textural considerations, the ex-
cellent textural preservation of the shells, even on a

Žsub-micron scale, is illustrated in Fig. 1 cf. also
.Bruckschen et al., 1999 . Such excellent preservation

is by no means a rarity in the present dataset.
Documentation can be found, e.g., in Brand
Ž . Ž .1989a,b , Wadleigh and Veizer 1992 , Grossman et

Ž . Ž . Ž .al. 1993 , Qing and Veizer 1994 , Carden 1995 ,
Ž . Ž . Ž .Copper 1995 , Azmy 1996 , Grossman et al. 1996 ,

Ž .Samtleben et al. 1996 , Wenzel and Joachimski
Ž . Ž . Ž .1996 , Wenzel 1997 , Azmy et al. 1998 and

Ž .others. Note that the depicted samples Fig. 1 have
trace element, d13C and 87Srr86Sr values as ex-
pected for a Silurian marine calcite, yet their d18Os
are around y5‰ PDB, well within the Phanerozoic

Ž .trend Fig. 13 . For the sake of the argument, let us
assume that the oxygen isotope values have been
altered by meteoric waters with d18O of say y5 to

y10‰ SMOW. In such a case, one-half to all of
oxygens in these calcite structures, i.e., up to 60% of
their building blocks, would have to be replaced by
extraneous oxygen without leaving behind the slight-
est trace in the optical, mineralogical, chemical and
isotopic make-up of the shells. This is difficult to
conceive, irrespective of whether one invokes a solu-
tionrreprecipitation process or, the less likely, solid
diffusion exchange.
The second line of argumentation is based on

geological consideration. Let us assume that the
18 Ž .trend of O depletion with age Fig. 13 is in the

first instance a result of post-depositional resetting
due to interaction with meteoric andror warm wa-
ters. Diagenetic stabilization of carbonate rocks in-
deed results in 18O depletion, but this depletion is
mostly related to transformation of metastable poly-

Ž .morphs aragonite, high-Mg calcite into stable ones
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Ž .low-Mg calcite and it usually happens very early in
the post-depositional history of the rocks. Subse-
quently, and in deep sea environments, the alteration
proceeds, at a slower rate, by pressure solution until
complete lithification. Once lithified, the subsequent
18O depletions — if any — are much less pro-
nounced. Note also that all ancient carbonate rocks
have undergone this stabilization step, thus self-cor-
recting for it for rocks older than about Cenozoic. As
a result, such a post-depositional trend would have a
steep slope during the Cenozoic, exponentially flat-
tening out with increasing age. Furthermore, due to
vagaries of post-depositional development of differ-
ent sedimentary basins, the resetting towards 18O
depleted values from the assumed modern day equi-
librium would result in a fan-shaped pattern that
broadens with age, with many outliers along the
alteration pathway, i.e., between 0‰ PDB and the
main Phanerozoic trend. Neither of these predictions

Ž .is supported by experimental data Figs. 11–13 .
Disregarding the second-order oscillations, the rate
of decline is about linear, the band of about equal
width, and there are essentially no outliers aboÕe
the upper limit of this band. Whatever outliers do

Ž .exist ;1% of samples , they plot mostly below the
main trend, i.e., any post-depositional 18O depletion

Ž .advanced from and not towards the main trend. In
order to sustain the diagenetic alternative, one would
have to argue that the post-depositional alteration
advances at roughly a constant rate, regardless of the
age of the rocks, and that all basins throughout the

Ž .world see the distribution of our samples have
undergone alteration strictly proportional to their
ages. Considering the plethora of geologic histories,
with samples from all continents but Antarctica, and
from a multitude of sedimentary basins, this is not a
credible proposition.
As already pointed out, the apexes of the second-

order oscillations appear to have coincided with cold
Ž . 18periods Fig. 13 , perhaps indicating that the d O

oscillations reflect global cooling trends. Leaving
aside the issue of the origin of these second-order
oscillations, let us concentrate on one of them, the
OrdovicianrSilurian transition. The d18O record of

Ž . 18this transition Fig. 15 shows the d O pattern
Ž .Carden, 1995; Azmy, 1996; Azmy et al., 1998
where the positive d18O excursions coincide, within
the resolution of a biozone, with glacial sediments, a

pattern, except for the shift in the baseline, analo-
gous to that of the Quaternary. Furthermore, the
pronounced terminal Ordovician d18O peak is clearly

Ž .a global feature within the acuminatus No. 21
biozone, because this signal was detected in China
Ž .Carden, this project , the Baltic region, Canada and

ŽArgentina Brenchley et al., 1995; Marshall et al.,
.1997 . This pattern can be easily understood in terms

of the primary signal, but is difficult to reconcile
with a diagenetic interpretation.
The third line of argumentation is based on the

mineralogy of the shells. Because of their exception-
Ž .ally well-preserved textures Fig. 1 , we believe that

low-Mg calcitic shells were relatively resistant to
diagenetic alteration. Moreover, molluscs that are
still preserved in their highly unstable original arago-
nitic mineralogy also plot within the general trend

Ž .defined by the low-Mg calcitic shells Fig. 13 . In
order to sustain the diagenetic alternative, it would
again be necessary to claim that all these shells
exchanged most of their oxygen, yet retained not
only their original low-Mg calcitic, but also original
aragonitic mineralogies.
The fourth line of argumentation is based on the

chemical composition of the studied samples. As
Ž .already demonstrated Fig. 2 , a minimum of 2r3 of

the 1370 samples studied by us for trace elements
have compositions directly comparable to modern
low-Mg calcitic shells. Diagenetic alterations usually

Ž . Ž .lead to decline in Sr Na and increase in Mn Fe
Žcontents Brand and Veizer, 1980; Veizer, 1983;

.Banner, 1995 . Based on such criteria, about 1r3 of
the samples characterized by Sr contents of less than
about 800 ppm may arguably be considered some-
what altered. Nonetheless, trace element criteria for
at least 2r3 of the samples are not consistent with
the proposition of diagenetic alteration.
The fifth line of argumentation is based on the

isotopic patterns of the studied populations. The
present Phanerozoic dataset is the first of such quan-
tity and quality where the samples have been studied
simultaneously for d18O, d13C, 87Srr86Sr, trace ele-
ments, and optical parameters. In addition, some of
the samples have been studied for d34S of struc-

Žturally bound sulfur Kampschulte and Strauss, 1996;
.Strauss, this issue . The possibility of a large strati-

graphic mismatch for different isotopic systems is
therefore mitigated. A crossplot of d18O vs. 87Srr86Sr
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Fig. 14. The d18O vs. d13C crossplots for the samples listed in Figs. 9–12. Explanations: circles — BochumrOttawa data; upright crosses
Ž . Ž— literature data LMC brachiopods, belemnites, oysters, foraminifera ; diagonal crosses — literature data LMC Quaternary temperate

.brachiopods . P 103r4: Permian, 103 BochumrOttawa samplesrfour literature samples. Note that the Tertiary field contains only pelagic
foraminifera.
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Fig. 15. The d18O trend across the OrdovicianrSilurian transition. The Ordovician biozones, based on graptolites, are the following: 17 —
Pleugograptus linearis, 18 — Dicelograptus complanatus, 19 — Dic. anceps, 20 — Climacograptus extraordinarius, 21 — Glyptograp-
tus acuminatus. The Silurian graptolite biozones are the following: 1 — Parakidograptus acuminatus, 2 — AtaÕograptus ataÕus, 3 —
Lagarograptus acinaces, 4 — Coronograptus cyphus, 5 — Monograptus triangulatus, 6 — Diplograptus magnus, 7 — Pribylograptus
leptotheca, 8 — Monog. conÕolutus, 9 — Monog. sedgwickii, 10 — Monog. turriculatus, 11 — Monog. crispus, 12 — Monoclimacis
griestoniensis, 13 — Monoc. crenulata, 14 — Cyrtograptus centrifugus, 15 — Cy. murchisoni. Glacial episodes after Grahn and Caputo
Ž .1992 . Patterns as in Fig. 6.

Ž .Fig. 16 shows a very high degree of correlation.
From a purely theoretical perspective, one could
perhaps argue that this correlation is a result of
diagenetic alteration. In that case, however, the Sr

Ž .isotopic trend Fig. 4 would have to be a secondary
feature as well. In order to escape such a conclusion,
it would be necessary to postulate that the 87Srr86Sr
of some 4000 samples remained almost perfectly

Ž .preserved Fig. 4 while their oxygens have been
heavily reset. This is not a credible proposition in

view of the repeatedly documented reproducibility of
the Sr isotope trend, even taking into account the
differing waterrrock ratios for these two elements in
a diagenetic system.

ŽFurthermore, all isotope pairs crosscorrelate posi-
.tively or negatively at very high confidence levels

Ž .Fig. 17 . We are not aware of any diagenetic sce-
nario that would have been capable of producing
such interrelationships. They can be, however, un-
derstood in terms of the primary signal that reflects
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Fig. 16. Crossplot of mean 87Srr86Sr vs. d18O values for 20 Ma intervals of the Phanerozoic. Mean values calculated from Figs. 4 and 13,
respectively. The correlation coefficient is y0.57 for all points and y0.84 if the two Cenozoic points are excluded. Insert, based on the
extension of the trend, suggests that seawater lies on a mixing line of two endmembers, primary magmatic water and meteoric water. The

Ž .composition of endmembers from Hoefs 1997 .

the operation of a unified and hierarchical exogenic
Ž . Žsystem litho-, hydro-, atmo-, biosphere Veizer,

.1988 , with tectonics driving it on geological time
scales via its control of biogeochemical cycles, in
this case the cycles of Sr, C, O and S. This proposi-

Ž .tion is supported by factor analysis Table 2 which
shows that the system is driven by three factors. The
first factor links oxygen and strontium isotopic evo-

Ž . 87 86lution Fig. 16 and the second one Srr Sr and
34 Ž .d S Fig. 18 . These two factors explain up to 63%
of the total variance. The last factor links the carbon

Ž .and sulfur isotopic evolution Fig. 19 . Because of
the high 87Srr86Sr loadings, the tentative interpreta-
tion identifies the first two factors as tectonic, gener-
ated by the relative importance of the hydrothermal
flux within the oceanic crust to its complementary

Ž .meteoric component riverine flux . The loading of
sulfur and oxygen on two separate factors likely
reflects the fact that the 18Or16O balance is tempera-

Žture-dependent, with a crossover at ;3008C e.g.,
. 34 32Gregory, 1991 , while the Sr S is only marginally

dependent on this variable. The third factor is a
biologically mediated redox linkage of sulfur and

Žcarbon cycles Garrels and Perry, 1974; Veizer et al.,
.1980 . Considering that the ultimate goal of this

contribution is to tackle the primary vs. secondary

Fig. 17. Correlation coefficients for carbonate 87Srr86Sr, d18O,
d13C and sulfate d34S mean values during the Phanerozoic. The
Sr, O and C isotope data from Figs. 4, 10 and 13, respectively.

34 Ž .The d S data from Strauss 1997, this issue . The means and
their correlation coefficients have been calculated for 1 to 40 Ma
intervals. The shading encloses the 95% confidence level domain.
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Table 2
Factor analysis of 87Srr86Sr, d13C, d18O and d34S for Phanerozoic seawater

Ž .The input data are 5 Ma averages from Figs. 4, 10 and 13 and from Strauss 1997, this issue , respectively. This resolution was selected
Ž .because it represents the realistic stratigraphic resolution of our database. Note, however, that other reasonable resolutions 1–40 Ma yield

Ž . Ž . 87 86similar outcomes cf. Fig. 17 . Calculated without and with in parentheses the anomalous Srr Sr data for the last 35 Ma.
Variable Factor 1 Factor 2 Factor 3
87 86 ( ) ( ) Ž .Srr Sr I0.83 I0.64 0.55 0.63 y0.06 y0.05
18 ( ) Ž . Ž .d O 0.90 0.75 y0.04 y0.11 0.31 0.28
34 Ž . ( ) ( )d S y0.15 y0.11 0.77 0.73 I0.37 I0.41
13 Ž . Ž . ( )d C 0.17 0.21 y0.24 y0.21 0.63 0.65

Ž . Ž . Ž .Percent of variance explained 38.9 25.7 23.9 24.8 15.9 16.8

controversy for the d18O record, we prefer to refrain
from further discussion of the subject. At this stage,
we only wish to reiterate that the isotope data are not
consistent with the diagenetic scenario.
The pattern in Fig. 16 shows that the latest ;35

Ma deviate from the overall correlation, suggesting
that either the d18O or the 87Srr86Sr of modern
cycles are not in a steady state. Since this departure
is visible only for Sr isotope data, it is likely that the
Sr cycle is the culprit in terms of its isotopic compo-
sition. This may have a bearing on the controversy
regarding the role of the Himalayas in the steep rise

87 86 Ž .in Srr Sr of the Cenozoic seawater Fig. 4 . If the
unroofing of the Himalayas were indeed the cause,
the rise in seawater 87Srr86Sr could have been ac-
complished either by an enhanced riverine Sr flux
Ž .Raymo and Ruddiman, 1992 andror by its more

Fig. 18. Crossplot of mean 87Srr86Sr and d34S values for 20 Ma
intervals of the Phanerozoic. Mean values were calculated from

Ž Ž .Fig. 4 and Strauss 1997, this issue , respectively. Note that the
d34S data are those of evaporitic sulfates with their relatively poor
temporal resolution.

Ž .radiogenic nature Edmond, 1992 . The isotopic rela-
Ž .tionships described in this contribution Figs. 16–19

support the second alternative.
In the above discussion, we reviewed five lines of

evidence for secondary vs. primary nature of the
observed d18O secular trend. Our attempt to explain
it as a secondary phenomenon failed, because it had
to rely in all categories on a set of implausible and
internally inconsistent special pleadings or could not
be reconciled at all. The primary alternative, on the
other hand, can be reconciled with all experimental
observations. Note that we do not wish to claim that
all samples are as well-preserved as those in Fig. 1.
All screening techniques, singly or in concert, have
their limitations and post-depositional alteration may
indeed be partly responsible for some of the 18O
depleted ‘troughs’ in Fig. 13, such as the mid-

Fig. 19. Crossplot of mean d13C and d34S values for 20 Ma
intervals of the Phanerozoic. Mean values were calculated from

Ž .Fig. 10 and Strauss 1997, this issue , respectively. Note also that
this factor is linked to the tectonic factor 2 via its sulfur and not

Ž .the carbon cycle Table 2 .
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Carboniferous. Nonetheless, except for these out-
liers, the cumulative optical, geological, mineralogi-
cal, chemical and isotopic evidence for the primary
nature of the Phanerozoic secular d18O trend, at least
in its major features, is compelling.
For the sake of a rounded discussion, we also

consider two objections frequently raised against the
primary nature of the d18O secular trend.

Ž .1 The brachiopods define a secular trend that
overlaps with that of the whole rocks, the latter

Ž .undoubtedly isotopically reset Land, 1995 .
Ž .2 The studies of oceanic crust and of ophiolites

Že.g., Muehlenbachs and Clayton, 1976; Gregory and
.Taylor, 1981 suggest that the magnitudes of high-

and low-temperature hydrothermal processes along
their depth profile are about equal and thus cancel
their opposing impact on the d18O of circulating
water. As a result, the seawater d18O is, and has
been, buffered around its present day value of about

Ž .0‰ SMOW Gregory, 1991 .
Concerning the first point, we already argued that

diagenetic stabilization of shelf carbonate facies is
mostly related to transformation of metastable poly-

Ž .morphs aragonite, high-Mg calcite into stable ones
Ž .low-Mg calcite and usually happens very early in
the post-depositional history of the rocks, at times
when diagenetic solutions still retain partial memory

Žof their seawater precursors Choquette and James,
.1990; James and Choquette, 1990 . This often limits

Ž .the whole rock shift to about y2‰ Fig. 20 . Once
stabilized, the subsequent 18O depletions are much
less pronounced. Such a shift can well be accommo-
dated within the d18O secular band, particularly since
the major rock components, the micritic matrix and
the early, marine, cements, had initial d18O composi-

Žtions around and above the top boundary e.g., Milli-
.man, 1974; Bathurst, 1975; Tucker and Wright, 1990

of the band based on skeletal precipitates.
Additional support for the claim that the bulk of

diagenetic stabilization of shelf carbonates usually
ceases at a rather early stage of diagenetic history is
provided by sulfur isotope data. Kampschulte and

Ž . 34Strauss 1998 studied the d S of trace sulfate from
brachiopods and their host rocks from this same
BochumrOttawa collection. The d34S of the shells,
as well as of the host rocks, all plot on the Phanero-
zoic d34S secular trend for evaporites. Such coher-
ence can only be generated if the system ‘shuts
down’ at a very early diagenetic stage, at times when
pore waters still retain the memory of seawater
composition.
Apart from the argument for the early diagenetic

overprint, we wish to point out the misunderstand-
ings that frequently arise from model images of

13 18 Ž .Fig. 20. The average formational d C and d O for the Silurian strata at Gotland. The brachiopod data are from Wenzel 1994 and the
Ž .whole rock data from Jux and Steuber 1992 . Note that except for the Burgsvik Formation that contains a disproportionate share of late

meteoric cements, the d13C means are comparable, while the d18O’s of whole rocks are depleted consistently by ;2‰ relative to
brachiopods. Courtesy of W. Buggisch and B. Wenzel.
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diagenesis. The reigning models of bulk rock solu-
Žtionrprecipitation, diffusionradvection type e.g.,

.Richter and DePaolo, 1987; Schrag, this issue have
only limited applicability for diagenesis of multi-
component carbonate assemblages. These models,
like their groundwater flow system precursors en
vogue for the shelf facies in the 1960s and 1970s,
predict well the chemical and isotopic gradients in
pore waters, but not the chemistry of the diverse
solid phases. The reason is that only a minuscule
portion of the solids is required to generate the pore
water gradients. Yet, it is not the millionth portion of
every particle that reacts, at any instant, with the
water, but only the most soluble millionth particle.
This is repeated with the next most soluble particle,
etc. As a result, the stabilized bulk rock consists of
domains that may have been completely, even re-
peatedly, recrystallized, while neighbouring domains

Žcould have remained practically unscathed cf. Brand
.and Veizer, 1980 . This is the reason for the excel-

lent textural, chemical and isotopic preservation of
some components, such as the presently studied LMC
shells.
Concerning the second argument, we concur that

Žthe oceanic ridge circulation Muehlenbachs and
.Clayton, 1976; Gregory, 1991 is the, or one of

several, controlling factor of d18O composition of
seawater. Accepting this, the Phanerozoic trend can
be reproduced, providing the magnitude of high-tem-
perature alteration is kept consistently higher than

Ž .that of its low-temperature analogue Fig. 21 . Modi-
fication of the ‘balanced’ model could therefore be a
solution to the dilemma. Theoretically, the required
imbalance could be created by either assigning a
greater magnitude to the high-T flux or a lesser one
to the low-T flux. The former may result from
processes within the oceanic crust itself, such as

18 Žthose that generate the O depleted gabbros Lecuyer
.and Reynard, 1996 , or at magma chambers of sub-

duction domains. Alternatively, the diminished low-T
flux may be a consequence of a decline in continen-
tal weathering input.
A corollary to this argument is the claim that

alteration trends in ophiolites ‘prove’ the buffering
of d18O of ancient seawater at near modern values.
In reality, these trends prove only that the waters
were depleted in 18O relative to the mineral assem-
blages of the ophiolites. At this stage, considering

Fig. 21. Theoretical model of hydrothermal alteration required to
produce the entire d18O secular trend in terms of changing sea
water 18Or16O ratios. The model calculated evolution of the ratio
R between the 18O flux consumed by the weathering of seafloor
basalts at low temperature and the 18O flux produced by the high
temperature weathering that is needed to reproduce an increase of
about 8‰ in the d18O of seawater over the Phanerozoic. The
curve was obtained by using a modified version of the ICM model
Ž .Godderis and François, 1996 , including the global alkalinity,´
carbon, d18O, d13C and 87Srr86Sr budgets. The result indicates
that the R should be about 40–50% in the course of the Phanero-
zoic. Continental contribution to the oxygen cycle was also taken
into account.

the large scatter in the alteration patterns, we are
neither in a position to demonstrate unequivocally
the equality of the low- and high-temperature fluxes,
nor to differentiate between alteration halos gener-
ated by water with d18O of 0‰ instead of sayy5‰
SMOW.
We wish to emphasize that despite all the above

argumentation, we do not suggest that the entire
observed d18O secular trend would have to be ac-
commodated by changes in isotopic composition of

Ž .ancient seawater cf. Azmy et al., 1998 . At this
stage, we only advocate a reassessment of discrepan-
cies between theory and experimental data, an alter-
native far preferable to the wholesale dismissal of
the latter.

11. Conclusions

Optical, mineralogical, chemical and isotopic
studies of a large collection of newly sampled

ŽPhanerozoic low-Mg calcitic fossils brachiopods and
.belemnites , complemented by geological considera-
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tions, demonstrate that the bulk of the shells are
well-preserved and likely retained their primary iso-
tope signals. The newly generated 87Srr86Sr curve
based on low-Mg fossils and conodonts resembles

Ž .the one by Burke et al. 1982 , but with greater detail
and less dispersion.
The d13C curve for the Phanerozoic shows a

general increase from about y1"1‰ to q4"2‰
PDB during the Paleozoic, an abrupt drop of 2‰ at
the PermianrTriassic transition and oscillations
around q2‰ in the course of the Mesozoic and
Cenozoic. Superimposed on this general trend are
higher-order oscillations, dominantly of global sig-
nificance.
The d18O shows a general increase from about

y8‰ to 0‰ PDB in the course of the Phanerozoic.
Superimposed on this overall trend are second-order
oscillations of ;150 Ma duration, their apexes coin-
cident with cold intervals.
The means of Phanerozoic 87Srr86Sr, d13C, d18O

and d34S correlate at any resolution in excess ofsulfate
1 Ma, suggesting that we are dealing with a unified

Ž .exogenic system litho-, hydro-, atmo-, biosphere
driven by tectonic forces. Factor analysis shows that
the above variables are controlled by three factors.
The first factor is characterized by reciprocal load-
ings of 87Srr86Sr and d18O, the second by positive
loadings of 87Srr86Sr and d34S, and the third one by
reciprocal loadings of d34S and d13C. We interpret
the first two factors as tectonic and the third one as a
biologically mediated redox balance of carbon and
sulfur cycles.
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