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Abstract—The influence of diet on the distribution of carbon isotopes in animals was investigated
by analyzing animals grown in the laboratory on diets of constant carbon isotopic composition.

The isotopic composition of the whole body of an animal reflects the isotopic composition of its
diet, but the animal is on average enriched in §'3*C by about 1%, relative to the diet. In three of
the four cases examined, the !*C enrichment of the whole body relative to the diet is balanced by
a 13C depletion of the respired CO,. The isotopic relationships between the whole bodies of animals
and their diets are similar for different species raised on the same diet and for the same species
raised on different diets. However, the 6*3C values of whole bodies of individuals of a species raised
on the same diet may differ by up to 2%,. The relationship between the '3C/!2C ratio of a tissue
and the '3C/!*C ratio of the diet depends both on the type of tissue and on the nature of the diet.
Many of the isotopic relationships among the major biochemical fractions, namely the lipid, carbo-
hydrate and protein fractions, are qualitatively preserved as diet carbon is incorporated into the animal.
However, the difference between the §'3C values of a biochemical fraction in an animal and in its
diet may be as large as 3%, The 6'3C values of the biochemical components collagen, chitin and
the insoluble organic fraction of shells, all of which are often preserved in fossil material, are related
to the isotopic composition of the diet.

These results indicate that it will be possible to perform dietary analysis based on the determination
of the '3C/!%C ratio of animal carbon. Analysis of the total animal carbon will in most cases provide
a better measure of diet than the analysis of individual tissues, biochemical fractions, or biochemical
components. The limits of accuracy of this method will generally restrict its application to situations
in which the diet is derived from sources with relatively large differences in their 6'3C values, such
as terrestrial vs aquatic organisms or C; vs C, plants. The method should be applicable to fossil
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as well as to living material.

INTRODUCTION

THE 6'3C values of the bodies of animals from mar-.

ine, freshwater and terrestrial environments fall within
the ranges of the 6!*C values of plants from the re-
spective environments (CRAIG, 1953; DEGENs, 1969;
DEGENS et al., 1968; SACKETT et al., 1965; SCHWARCZ,
1969; SMITH and EPSTEIN, 1970). Field studies have
also shown that the large differences in 6!3C values

characteristic of plants possessing either the C; or’

C, photosynthetic pathways (SMITH and EPSTEIN,
1971) are reflected in the carbon isotopic combosition
of animals which derive their carbon predominantly
from plants of one or the other photosynthetic type
(HAINES, 1976; MINSON et al., 1975). It has been con-

cluded from these observations that there is no large

isotopic fractionation associated with the incorpor-
ation of carbon from the diet into an animal.

The accuracy with which the relationship between
the carbon isotopic composition of an animal and
its diet can be determined from the 8'3C values of
animals and plants collected in the field is limited
by two factors which cannot be adequately controlled
In such studies. First, there may be seasonal vari

* Contribution No. 2950. Publications of the Division
of Geological and Planetary Sciences, California Institute
of Technology, Pasadena, CA 91125, US.A.

ation in the carbon isotopic composition of the diet.
For example, the 6'3C values of maple leaves and
a grass species collected at a single locality can vary
by more than 5%, during the growing season
(LowpoN and Dvyck, 1974). Variations of similar
magnitude probably exist for other plants. Unless
recently synthesized animal components are analyzed
or an integrated value for the isotopic composition

“of the diet is used, the relationship between the plant

and animal isotopic composition cannot be accurately
determined. Second, implicit in the design of most
field studies is the assumption that herbivores will
consume the available plants at random. However,
animals may be selective in their choice of food plants
and the §'3C values of the plants eaten may differ
from the average 6!3C value of the plants available
to the animal. This assumption could lead to large
errors if the potential food plants included both C,
and C, plants, since there is some evidence that herbi-
vores avoid eating C, plants (CASWELL et al., 1973).

The first objective of this study was to determine
the relationship between the carbon isotopic composi-
tion of an animal and its diet. This was done directly
by analyzing animals which had been raised in the
laboratory on diets of constant 5!3C value. A second
objective of the study was to determine whether the
dietary history of an animal could be reconstructed
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from the §'3C value of its carbon. Since it may not
always be possible or practical to measure the §!'3C
value of a whole animal for this purpose, the relation-
ships between the §'2C value of the diet and the §'3C
values of several tissues, biochemical fractions and
biochemical components of animals raised on diets
of constant §!2C value were also determined.

A preliminary report of this work was presenteq
by DENIRO and EPSTEIN (1976).

EXPERIMENTAL METHODS

Growth of animals
All animals were raised from birth on diets of constant
carbon isotopic composition. The animals, their diets and

Table 1. Methods employed in raising animals on diets of constant 6'*C value

Animal Diet

Animal growth technique

Algae
(Dunaliella sp.)

Artemia salina
{brine shrimp)

Bacteria
(Escherichia coli)

Caenorhabditis elegans
(nematode)

Calliphora vicina Horsemeat
{®low fly) (Equus cabalius)
or
Pork

(Sus scrofa)

Desmia funeralis Grape leaves

(moth) (Vitis vinifera)
Helix aspersa Romoine lettuce leaves
(snail) (Loctuca sativa)

Melanoplus sanguinipes Corn seedlings

(grasshopper) (Zea mays)
or
Wheat seedlings
(Triticum aestivum)
Mus musculus, Purina Rat Chow mixture
Strain AQR
(mouse)

Mus musculus, Wayne Lab~Blax Fé mixture

Strain BALB/c

(mouse)

Mus musculus, JAX 911A mixture

Stroin BALB/c

(mouse)

Musca domestica Horsemeat
(house fly) (Equus caballus)
or
Pork

(Sus scrofa)

Milkweed seeds
(Asclepias syriaca)

Oncopeltus fasciatus
(milkweed bug)

Sitophilus granarius Wheat seeds
(weevil) (Triticum aestivum)
or

Sitophilus oryzae

(weevil)

Hatchlings were inoculated into a liquid culture of algae.
The animals were separated from the algae after the growth
periad by serial washing.

A small quantity of nematodes was inoculated into a liquid
culture of bacteria. The animals were separated from the
bacteria after the growth period by centrifugatian (JOHNSON,
1977).

Eggs were placed on the meat, which was then covered with
sawdust. After 13 days, pupae were transferred to an empty
container. Adults were collected within 12 hours of emergence
from the pupal cases.

The animals had been maintained in the laboratory for several
generations an the specified diet (ALINIAZEE and STAFFORD,
1973). They were pravided with grape leoves and water ad

The animals had been maintained inthe laboratory for
several generatians on the specified diet (CROWELL, 1973).
They were provided with Romaine lettuce leaves and water
ad libitum. The diet was supplemented with CaCO3 or Ca3
(PO4)2-

The animals, starting with newly hatched nymphs, were
provided with seedlings and water ad libitum,

The animals were obtoined from the animal room of the
California Institute of Technology, where they had been
maintained for a number of generations on the specified
diet. They were provided with the diet and water ad
libitum.

The animals were obtained from the L. C. Strong Company,
San Diego, California, where they had been maintained
for a number of generations on the specified diet. They
were provided with the diet and water ad libitum.

The animals were obtained from The Jackson Labaratory,
Bor Harbor, Maine, where they had been maintained for a
number of generations on the specified diet. They were
provided with the diet and water od libitum.

Eggs were placed on the meot, which was then covered
with sawdust. After 10 days, pupae were transferred to
an empty container. Adults were collected within 12
hours of emergence from the pupal cases.

The animals had been maintained in the laboratory

for many generations on the specified diet (LA CHANCE
and RIEMANN, 1973). They were provided with milkweed
seeds and water ad libitum.

The animals had been maintained in the laboratory

for several generations on the specified diet (LUM and
BAKER, 1973). They were provided with wheat seeds
and water ad libitum.
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from the §'3C value of its carbon. Since it may not
always be possible or practical to measure the §*3C
value of a whole animal for this purpose, the relation-
ships between the 6'3C value of the diet and the §'3C

“values of several tissues, biochemical fractions and

biochemical components of animals raised on diets
of constant §'3C value were also determined.

A preliminary report of this work was presenteq
by DENirO and EPSTEIN (1976).

EXPERIMENTAL METHODS

Growth of animals
All animals were raised from birth on diets of constant
carbon isotopic composition. The animals, their diets and

Table 1. Methods employed in raising animals on diets of constant §'*C value

Animal Diet Animal growth technique
Artemia salina Algae Hatchlings were inoculated into a liquid culture of algae.

(brine shrimp) (Dunaliella sp.)

Caenorhabditis elegans Bacteria
(nematode) (Escherichia coli)

Calliphora vicina Horsemeat
®low fly) (Equus caballus)
or
Pork

(Sus scrofa)

Desmia funeralis Grape leaves
(moth) (Vitis vinifera)

Romaine lettuce leaves

Helix aspersa

(snail) (Lactuca sativa)
Melanoplus sanguinipes Corn seedlings

(grasshopper) (Zea mays)

or
Wheat seedlings
(Triticum aestivum)
Mus musculus, Purina Rat Chow mixture
Strain AQR
(mouse)

Mus musculus,

Strain BALB/c

(mouse)

Wayne Lob-Blox Fé mixture

Mus musculus, JAX 9211 A mixture

Strain BALB/cJ

{mouse)

Musca domestica Horsemeat
(house fly) (Equus caballus)
or
Pork

(Sus scrofa)

Milkweed seeds

(Asclepias syriaca)

Oncopeltus fasciatus
(milkweed bug)

Sitophilus granarius Wheat seeds
(weevil) (Triticum gestivum)

or

Sitophilus oryzae

(weevil)

The animals were separated from the algae after the growth
period by serial washing.

A small quantity of nematodes was inoculated into a liquid
culture of bacteria. The animals were separated from the
bacteria after the growth period by centrifugation (JOHNSON,
1977).

Eggs were placed on the meat, which was then covered with
sawdust. After 13 days, pupae were transferred to an empty
container. Adults were collected within 12 hours of emergence
from the pupal cases.

The animals had been maintained in the laboratory for several
generations on the specified diet (ALINIAZEE and STAFFORD,
1973). They were provided with grape leaves and water ad
libitum.

The animals had been maintained inthe laboratory for
several generations on the specified diet (CROWELL, 1973).
They were provided with Romaine lettuce leaves and water
ad libitum. The diet was supplemented with CaCO3 or Cag
(PO4)2.

The animals, starting with newly hotched nymphs, were
provided with seedlings and water ad libitum.

The animals were obtained from the animal room of the
California Institute of Technology, where they had been
maintained for a number of generations on the specified
diet. They were provided with the diet and water ad
libitum. -

The animals were obtained from the L. C. Strong Company,
San Diego, California, where they had been maintained
for a number of generations on the specified diet. They
were provided with the diet and water ad |ibitum.

The animals were obtained from The Jackson Laboratory,
Bar Harbor, Maine, where they had been maintained for a
number of generations on the specified diet. They were
provided with the diet and water ad libitum.

Eggs were placed on the meat, which was then covered
with sawdust. After 10 days, pupae were transferred to
an empty container. Adults were collected within 12
hours of emergence from the pupal cases.

The animals had been maintained in the laboratory

for many generations on the specified diet (LA CHANCE
and RIEMANN, 1973). They were provided with milkweed
seeds and water ad libitum.

The animals had been maintained in the laboratory

for several generations on the specified diet (LUM and
BAKER, 1973). They were provided with wheat seeds
and water ad libitum.
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Table 2. 8'°C values of the diets. The sampling
methods are discussed in the text

Diet Sompling method 6]3CPDB %)

Igae A2 -20.4°
Quzteria b A2 -24 .49
Corn seedlings B ~22,6 0.6 (n=3)
Grape leaves Al -29.59
Horsemeat A2 -23.99
JAX LA mixture B -22.3120.5 (n =10)
Milkweed seeds Al -27.10
Pork A2 -13.59
puring Rat Chow mixture B -18.3120.6 (n=4)
Romaine lettuce leaves B -26.6+0.3 (n=3)
Wayne Lob-Blox Fé mixture B8 -19.3+0.4 (n =4)
Wheat seeds Al -25.00
Wheat seedlings® B -40.240.8 (n=3)

» Duplicate analyses of the single sample of this diet
differed by less than 0.2¢%,.

®The #'3C values of these laboratory-grown plants
are more negative than the 6!2C values for samples
grown in the field (SMitH and EpsTEIN, 1971) because
of differences in the §'3C values of their respective
sources of CO, (DENIRo, 1977).

the techniques used in raising the animals are indicated
in Table 1. In those cases in which the animals had not
been raised on the specified diet for at least several gener-
ations, the difference between the weights of new-born ani-
mals which were introduced to the diet and the animals
which were analyzed was determined; the contribution of
carbon from the maternal diet was found to be negligible.

Sampling procedures

The methods used in sampling the diets and the diet
$1*C values are listed in Table 2. In those cases in which
the animal and its diet were supplied to us, a sample of
the diet was taken immediately upon receipt (sampling
technique Al). In these cases, the diet was drawn from
a large homogeneous reservoir so that variation in the
6'3C value of the diet was negligible over the lifetime of

50-100mg. lyophilized, powdered sample
|
Add 2 m). 10:5:4 methanol:chloroform: water
Grind with glass rod

Centrifuge, 18004g.

Pellet Supernatani
I
Add 2 ml. methano!
J
Grind with glass rod

|
Centrifuge, 1800g.
|

1

[
Pellet (discard) Superngtant
Combine

Add chlorofom|1 ond 0.18 # KC
to bring final methanoi:chloroform:
water plus 0.18 # KC| ratio 10 10:10:9

Mix and allow phases to seporale

[solate lower chloroform phose
with separatory funnel

Evaporate chloroferm

Residue is LIPID FRACTION

the animal. In those cases in which the animal was given
its entire lifetime supply of food at one time, a sample
of the diet was taken when the animal was introduced
to the diet (sampling technique A2). If several batches of
food were required during the lifetime of the animal, at
least one sample from each batch was taken (sampling
technique B). The samples of the diets were stored at
—20°C prior to analysis.

If the 6'3C value of a whole animal is to be determined,
food in its gut represents contamination. This necessitated
the adoption of several variations in the sampling pro-
cedures for the animals. All insects, except for Calliphora
(blow fly) and Musca (house fly), were held in cages with
water but no food for 24 hr prior to collection to permit
them to empty their guts by the normal processes of excre-
tion. This treatment was not necessary for Calliphora and
Musca, since the food, which was available only to the
juvenile larval stages, was not present in the gut of the
adults which were analyzed. Artemia (brine shrimp) and
Caenorhabditis (nematode) were maintained in liquid cul-
ture without food for 4 hr to permit them to purge their
digestive tracts by excretion. The gut and its contents were
removed from Helix (snail) specimens by dissection.
Organs and tissues of Mus (mouse) exclusive of the alimen-
tary canal, rather than the whole organism, were analyzed.
All animals with the exception of mice were killed by im-
mersion in liquid nitrogen and stored in their entirety at
—20°C prior to analysis. Mice were killed by cervical dis-
location and dissected; their tissues were stored at —20°C
prior to analysis.

Preparation of biochemical fractions and components
Specimens from which the biochemical fractions lipid,
carbohydrate (as glycogen) and soluble protein were to
be isolated were first lyophilized (freeze-dried), then ground
to a powder. The various fractions were isolated by the
procedures outlined in the flow diagram of Fig. 1. These
procedures are based on published techniques for the isola-
tion of lipids (BLiGH and DyER, 1959), glycogen (JACOBSON
et al., 1972) and protein (MARROQUIN and FARBER, 1965).

300-1000mq. Iyophilized, powdered sample

Add 40 ml. water
|

Sonicate

|
Centrifuge, 2000g.
|

[
Pellet(discard) Supernatant

!
Add TCAltrichloroacetic acid) to
bring final TCA concentration ta
10% (w/w)

Cool fo 4°C
|
Centrifuge, 18004.
1

[ ]
Peflet Supernatani

| |
Add 5ml. 10% (w/w) TCA ‘Centrifuge, 20000g.

)
Heat to 90°C for 30 minufes
| . Pellet Supernatant
Filter through glass-fiber filter {discard)

Residue is Dissolve in 10 ml. water

SOLUBLE PROTE!N FRACTION Add IOImL A-butanol

!
Mix and allow phases fo separate

[solote lower aqueous phase
with separatory funnel

|
Centrifuge, 200009.
|

Pellet is GLYCOGEN FRACTION

Fig. 1. Flow diagram for the isolation of the lipid, glycogen and soluble protein fractions.
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50-150 mq. cleaned, crushed bone
|
Add 50 mi. 1 A HCI

!
After 20 minules, filter through
glass-fiber filter

Residue Filtrate (discard}
|

Add 50ml. 1073 4 HCI
|

Heat to 95°C for 10 hours
|

Filter through glass-fiber filler

Filtrate
|
Lyophilize

Residue {discard}

|
Residue is COLLAGEN

M. J. DeNiro and S. EPSTEIN

Whole untreated insect specimen
Add 40 m), 10 % (w/w) NaOH
|
Reflux for 24 hours
!

2x Decant

Solutian
{discard)

Insoluble
residue

Wosh in 9:1 ethanol : woter

Wosh in 3:) e:honol + woler

Waosh in 121 ethanol : waler 2

Wash in 1:3 ethanol : water
Wash in water

Wash in 5% ||0'2 MHCI

Wosh in woter

Insoluble residue is CHITIN

100-300 mg. cleaned shell fragment
Dialyze aqoinst 10% (w/v} EDTA,
buffered ot pH 7.0 with phosphate,
for 7 doys
Dialyze against water for 3 days
Centrifuge contents of diolysis bag, 31704,
Pellet Supernatant
1 (discard)
Add water

|
Centrifuge, 3170 4.
i

( 1
Pellet is Superaatant (discerd)
SHELL INSOLUBLE

ORGANIC FRACTION

Fig. 2. Flow diagram for the isolation of collagen, chitin and the insoluble organic fraction of shells.

Mouse bones from which collagen was to be isolated
were prepared by the following procedure. The flesh was
removed from the bones by incubating them with dermes-
tid beetle larvae for one month. Superficial debris was
removed from the stripped bones using ultrasound. The
bones were then lyophilized and any remaining debris was
removed with forceps under a dissecting microscope. The
cleaned bones were crushed in a steel piston. Snail shells
from which the shell insoluble organic fraction was to be
isolated were scrubbed in water to remove any superficial
organic matter. No treatment was required to prepare in-
sect specimens for the extraction of chitin. The procedures
used to isolate collagen, chitin and the shell insoluble
organic fraction are shown in the flow diagram of Fig.
2. These procedures are based on the published methods
of LonNGIN (1971), Tsao and RicHARDs (1952) and WEINER
et al. (1976).

Preparation of samples for isotopic analysis

Prior to combustion, samples of diets, whole bodies of
animals, tissue specimens, biochemical fractions (excluding
the lipid fractions) and biochemical components were lyo-
philized, then ground to a powder. Each lipid sample was
taken up in 0.3ml chloroform and transferred to a com-

bustion boat. The chioroform was removed by evaporation
and the sample was lyophilized prior to combustion.
Prior to isotopic analysis of their carbonate fractions,
shell and bone samples were ground to a powder, then
treated with a 509, aqueous solution of commercial Clorox
to destroy organic matter (LOWENSTAM and EPSTEIN, 1957).

Isotopic analysis

Calcium carbonate was converted to CO, for isotopic
analysis by reaction with HyPO, (McCREA, 1950). The pre-
cision of the carbonate analysis was +£0.1%,.

Organic carbon was converted to CO, for isotopic
analysis by combustion in a stream of oxygen at 850°C
(CrAIG, 1953). Water was removed from the combustion
products by condensation in a dry ice bath. Oxides of
nitrogen and sulfur were separated from the CO, by pass-
age over Cu turnings and MnO, powder maintained at
450°C (SAcKETT and THOMPSON, 1963). The precision of
the combustion procedure was +0.29,.

Respired CO, was collected for isotopic analysis in the
line shown in Fig. 3. The line was evacuated, then filled
with air scrubbed of CO, by passage over Ascarite and
through a barium hydroxide bath. After the animals were
introduced into the specimen bulb, trap 1 was immersed

VACUUM Tro VACUUM f 70 VACUUM
GAUGE
5
[t S
al |
-l
TRAP 1
SAMPLE TUBES [ AIR INLET § 18
TRAP  TRAP - =
i I == S
(224
2
-
= GROUND GLASS JOINT
== STOPCOCK
BofOH),
L copeer TuRNINGS BATH
SPECIMEN BULB
AIRSTONE

Fig. 3. High vacuum line for the collection of respiratory CO,.
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in liquid nitrogen. The resulting condensatign of oxygen,
carbon dioxide, and water caused the specimen bulb to
pe purged with CO,-free ajr. The specimen bull? was iso-
Jated long enough to permit th; animals to respire a CO,
sample large enough for analysis, lhep swept with CO,-free
air by immersing trap Il in a dry ice bath and trap 111
in liquid nitrogen. Thg resplred CO, co.llected in trap III
was purified from unidentified contaminants by passage
over Cu turnings and MnO, powder maintained at 450°C
(SACKETT and THOMPSON, 1963) prior to isotopic analysis.

_ The precision of the respiratory CO, analysis was +0.39%,.

The CO, samples were analyzed in a 60° sector, double-
collecting mass spectrometer. The results are expressed in
the usual 6'>C notation

(l 3C:/1 2C:)sample
(le/l zC)slzndard
The standard is the PDB carbonate.

§'13C(in %) = [ - 1] -1000.

RESULTS AND DISCUSSION

Relationships between the §'3C values of the whole
bodies of animals and the 6'*C values of their diets

The 8'3C values of the whole bodies of animals
and the 8'3C values of their diets are shown in Fig.
4. The following conclusions can be drawn from these
data.

(1) The animal carbon is in most cases enriched
in 13C relative to the diet carbon. In eight of the
thirteen cases examined, the AsnvaL-pier value
(0" Canimar — 0'>Coer) Is positive, while in only one
case, Caenorhabditis (nematode) raised on bacteria, is
it significantly negative. The average Ajnmar-pieT
value is +0.8 + 1.1%,. Values range from —0.6%, for

L5 N e S S S (s S S S G L

-140
—E Melanoplus ted corn seedlings []
-200 Catliphorai®}, Musco(o) ted horsemeat ]
- Coenorhabdiris ted bacterio
- H Siraphiles gronorius(®), S oryzoe (©) ~
> fed wheat seeds l
@ B Helix fed Romaine lettuce leaves
IS — plus CaCOy (0] or Caz(PO,), (0} 8 N
':_%) 260 k- Oncopellus fed milkweed seeds o -
«o - ~
[
I - . ]
= : -
= ~ }
< - Oesmig ed grape leaves ~
~300 1
=350 F.—,Mlaﬂop/us fed wheat Pr:;nswn o* ﬂ(
= { seedlings 8 '°C analyss -
*
— 4
® ADULTS 1
& JUVENILES
4 ADULTS AND JUVENILES
~40.0 -]
P Y U TR R S S R T N B P YS B e

-400 -350-300

y/

Caenorhabditis raised on bacteria to +2.79,, for Des-
mia (moth) raised on grape leaves and Melanoplus
(grasshopper) raised on wheat seedlings.

(2) The 6'3C values of different individuals of a
species raised on the same diet may differ. The range
of AsnmmaL-pier values for individuals of a species
varies from 0.2%, for Calliphora (blow fly) raised on
pork (n = 4) to 1.8%, for Melanoplus (grasshopper)
raised on wheat seedlings (n = 4).

(3) Two species fed the same diet have similar
Aanmvar—pier  values. The largest difference in
Aanimar—pier values for Calliphora (blow fly) and
Musca (house fly) raised on horsemeat, Calliphora and
Musca raised on pork, or Sitophilus granarius (weevil)
and S. oryzae (weevil) raised on wheat seeds is 1%,.

(4) The Ajnimar-pier Values for a species fed two
different diets are similar. The largest difference in
Asnimar—-pier values for Calliphora (blow fly) raised
on horsemeat or pork, Musca (house fly) raised on
horsemeat or pork, or Melanoplus (grasshopper)
raised on corn or wheat seedlings is 1%,

Carbon isotope mass balance between animals and their
diets

The isotopic composition of carbon which an ani-
mal eats (input) must equal the integrated isotopic
composition of the carbon which is incorporated into
the body and that which is lost by respiration and
excretion (output). Therefore, the '3C enrichment of
the whole animal relative te its diet must be balanced

Colliphora{®), Musco(o) fed pork

Arfemso ted cigae

-250 -200 -140

DIET 8 "Cppg (%ol
Fig. 4. §'3C values of the whole bodies of animals and their diets. Each point represents the analysis
of a single animal, except for the two Sitophilus species (five animals were combusted together for
each point) and for Artemia and Caenorhabditis (many animals were combusted together for each
point).
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Fig. 5. 8'*C values of the input and analyzed output components of four animals. For Helix, uric

acid and the slime laid down to aid in locomotion were not analyzed. Each point represents the

analysis of the specified output component of a single animal, except for the feces (the output of

several animals during one day was combined) and the respired CO, of Oncopeltus and Helix (the
output of several animals was collected).

by a *3C depletion, relative to the diet, of the respired
CQO,, the excreted carbon, or both.

The 6'3C values of the input and output com-
ponents of four animals are shown in Fig. 5. The
same isotopic relationship among these components
holds for the three insects analyzed (Melanoplus
(grasshopper) fed wheat seedlings, Melanoplus fed
corn seedlings, and Oncopeltus (milkweed bug) fed
milkweed seeds): the respired CO, is depleted in '3C
relative to the diet, while the feces and the whole
body carbon have more positive 613C values than
the diet. It should be noted that in insects the nitro-
genous waste products are incorporated into the feces
(WIGGLESWORTH, 1972), rather than excreted separ-

ately as in some higher animals, so that the feces in
these cases represent all the output carbon lost
through excretion.

The data needed to solve the isotopic mass balance
expression for Melanoplus (grasshopper) raised on
wheat seedlings are shown in Table 3. The sizes of the
various input and output component pools, namely
the weight of wheat seedlings eaten, the weight of
feces produced, and the increase in body weight, over
a five-day period for Melanoplus sanguinipes, the
species used in this study, were estimated using the
data of SMITH (1959) for the closely related species
Melanoplus bilituratus. The amount of carbon lost 3
respired CO,, which SmirH (1959) did not determine,

Table 3. Isotopic mass balance for Melanoplus fed wheat seedlings

Total weight for Carbon Total carbon for 13
Component five-day period” concentration -1 five-day period & CPDB(%)
(in mg.) (in 4 moles CO2 mg. ) (in b moles C02)
Input
Food (wheat seedling) 148.0 34.5 5106 ~40.2 £0.8
Output
Respired (carbon dioxide) not determined ~— 1378° - ~40.820.6
Excreted (feces) 112.5 30.3 3409 ~39.5+0.4
Incorporated (whole body) 8.1 39.4 319 -37.5+0.8
Total (calculated) —— ~—— 5106° ~39.7 £0.3

* Data of SmitH (1959) for Melanoplus bilituratus adults.

" Average yield for samples from Fig. Sa.

¢ Calculated by assuming amounts of input and output carbon were equal.
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as assumed to make up the difference between the
! ounts of input and output carbon. The 813C value
aIT;Culalted for the output carbon, —39.7 + 0.3%,
< ces well with the 3'3C value of the input carbon,
agionz + 0.8%,, indicating that the major output com-
’Onent; have been identified and analyzed. The iso-
opic mass balance expressions for the other tv.vo n-
ceots could not be solved because data relating to
he sizes of their input and output component pools
were not available.

The apparent absence of isotopic mass balance
petween input and output components of the fourth
qnimal reported in Fig. 5, Helix (snail) fed Romaine
lettuce leaves plus Ca;(POy),, is an artifact of the
experimental design. It was not possible to collect
either uric acid, which is excreted separately from the
feces (POTTS, 1967), or the organic slime which is laid
down by snails to aid in locomotion. The material
palance suggests that at least one of these output
components has a §!°C value more negative than that
of the diet. It is important to note that in this case
the 13C enrichment of the body relative to the diet
is not balanced by a '3C depletion of the respired
CO,, as was observed in the three other cases which
were analyzed.

Relationships between the 6'3C values of the tissues
of mice and the 8'>C values of their diets

It is impractical to determine the §'C value of
the whole body of a large animal. An alternate
approach useful for dietary analysis is to determine
the isotopic composition of a part of the animal
which reflects the 8!3C value of the diet. The 6'3C
values of various tissues of mice raised on diets of
constant carbon isotopic composition were measured
in order to determine which tissues might be suitable
for this purpose.

In the first experiment, tissues from eleven mice
raised on a diet of Wayne Lab-Blox F6 were pooled
and homogenized prior to analysis in order to mini-
mize differences between individuals. The §!3C values
of the tissues and the diet are shown in Fig. 6a. Most
of the pooled tissue samples have §'3C values which
are ~1.5%, more negative than the §!3C value of the
diet. However, the 6'3C values of brain, hair and
spleen are all more positive than that of the diet by
up to 1%,. Analysis of tissues taken from individual
mice raised on the same diet are also shown in Fig.
6a. The §!3C values of brain, liver and kidney from
individual animals do not differ from the 8!3C value
of the pooled sample by more than 1%, For some
tissues, however, considerable variation among
Samples taken from individual mice was observed.
Spleen and hair from individuals have §'3C values
which differ from the 6!3C value of the pooled sample
by up to 3.6%,.

0'°C values of tissues from individual mice raised
on other diets and the §'3C values of the diets are
also shown in Fig. 6. Mice raised on a diet of Purina
Rat Chow (Fig. 6b) have a distribution in the §'3C

values of their tissues similar to that observed for
mice raised on Wayne Lab-Blox F6. Brain and hair
generally have higher 6'3C values and the other
organs have lower 6'3C values than the diet. The
main difference between mice raised on the two diets
is the absence of !*C enrichment relative to organs
other than brain and hair in the spleens of mice fed
Purina Rat Chow. Mice raised on a diet of JAX 911A
(Fig. 6c) differ in two features of the distribution of
carbon isotopes in their tissues compared with mice
raised on the other two diets. First, the liver and kid-
ney of these mice have more positive §!3C values than
the diet. Second, the brain has a §'3C value slightly
lower than those of the other tissues analyzed. The
basis for the non-uniform distribution of carbon iso-
topes among the various tissues of mice and the effect
of diet on that distribution are being investigated.

In summary, the data shown in Fig. 6 indicate that
no single tissue can be analyzed in order to determine
the carbon isotopic relationship between the animal
and its diet. For the purpose of dietary analysis, the
determination of the §'*C values of several tissues
from an animal will allow for a better estimate of
the 813C value of its diet than would the analysis
of a single tissue.

Relationships between the 6'3C values of biochemical
fractions in animals and in their diets

As discussed previously, different species raised on
the same diet may have small differences in their
Asnmar-pier values. Similarly, individuals of the
same species raised on different diets may have
slightly different AsnmaL-mier values. Differences in
the relative proportions of the major biochemical
fractions incorporated from the diet into the animal
could account for part of this variability in the iso-
topic relationships, because the major biochemical
fractions have characteristically different §'3C values
(ABELSON and HOERING, 1961; PARK and EPSTEIN,
1961; PARKER, 1964). If this is so, comparison of the
§13C values of biochemical fractions in an animal and
in its potential diet sources might provide a more
accurate measure of diet than would analysis of the
total carbon. This approach assumes that there is
little or no isotopic fractionation during the incorpor-
ation of the biochemical fraction by the animal.

Accordingly, the 6'3C values of the total organic
matter and of the lipid, carbohydrate (as glycogen)
and soluble protein fractions were determined for
horsemeat and pork and for each of two species of

.ﬂies, Calliphora and Musca, which were raised on
each meat. The results of this analysis are shown in
Fig. 7. The difference between the §!3C value of the
total organic matter of a fly and that of its diet is
less than 0.5%, for all four cases. However, the §!3C
value of a biochemical fraction of a fly may differ
from the §'3C value of the same fraction of the diet
by up to 3.09%,.

The data shown in Fig. 7 indicate that the bio-
chemical fractions of the diet are not incorporated
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Fig. 6. 613C values of tissues of mice and their diets. Each point represents the analysis of tissue
dissected from a single mouse, except as indicated.

into the animal without isotopic alteration. The differ-
ence between the §'*C values of a fraction in an ani-
mal and the corresponding fraction in its diet could
_arise from isotope effects during incorporation of the

fraction or during the de rovo synthesis of some com
ponents of the fraction in the animal. The observation
that these isotope effects tend to balance one another
when averaged over the whole of an animal’s metabo-
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Fig. 7. 8'C values of the total organic matter and the major biochemical fractions of two species
of flies and their diets. Between 50 and 100 flies were combined to make the samples of total organic
matter from which the biochemical fractions were isolated.
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fism suggests that changes in the 6"3C value of one
fraction occur at the expense of the isotopic composi-
ion of some other fraction, presumably by means of
the numerous metabolic pathways which permit the
conversion of carbon from one biochemical fraction
1o another (MaHLER and CorDEs, 1971).

The isotopic relationships among the biochemical
fractions of horsemeat, namely 6"*Cppip < 0" *CroraL
ORGANIC MATTER: 513CL1HD < 613CCARB0HYDRATE and
§3Cupp < 813CproTEIN, fOllow the pattern that has
been observed in all animals, plants and micro-
organisms which have been analyzed (data compiled
in DENIRO, 1977). The isotopic distribution among the
piochemical fractions of pork is the first case in which
all these relationships have not been observed. The
different isotopic relationships among the biochemical
fractions of the two meats probably reflect differences
in the feeding regimes of the animals. Horses intended
for slaughter are generally fed the same diet through-
out their lives (CARR, 1977). On the other hand, the
pork was obtained from corn-fed pigs (JoHn, 1977),
which are fed mixed grains when they are young and,
in order to fatten them for market, are fed a diet
rich in corn during the second half of their lives
(CaRR, 1977). Most grains except for corn come from
C, plants, and therefore have 6'*C values more nega-
tive than corn, which is a C, plant (SMITH and
EpsteIN, 1971). If the lipids and glycogen of the pork
were formed predominantly during the fattening

* period, their 6'*C values would be more positive

(corn-like) than that of the protein fraction. The lower
813C value of the pork lipid fraction relative to that
of the carbohydrate (as glycogen) fraction is the usual
relationship observed between the 6'3C values of
these two fractions.

In spite of differences in the absolute §!3C values
of biochemical fractions in animals and in their diets,
many of the isotopic relationships among the frac-
tions appear to be inherited from the diet. The
relationships ~ 6'*Cpipip < 6"*CroraL 0rRGANIC MATTERS
613CL]PID < 6"*CcarBOHYDRATE and 0 Cripin
< 83Cproremn, Which exist among the biochemical
fractions of the horsemeat are also observed in the
flies which were raised on it. The biochemical frac-
tions of both species of flies raised on pork show
the same anomalous isotopic relationships which exist
among the corresponding fractions of the pork,
lamely  6'°Cpipip > 6'°CroraL orcancmarter  and
33Cpip > 643Cprorrin. In the instance of horsemeat
fiﬂd the flies which were raised on it, the similarities
I the isotopic relationships among the biochemical
fractions may arise from similarities in the biochemi-
¢al pathways by which the fractions are synthesized.
This possibility does not apply in the case of pork
and the flies which were raised on it, since the irregu-
l‘_“ isotopic relationships among the biochemical frac-
tions of the pork do not result from isotopic fraction-
ation during synthesis. From these limited data, it
4pears that many of the isotopic relationships
qmong the biochemical fractions at one trophic level
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will be inherited by the organisms at the next trophic
level.

In summary, the data shown in Fig. 7 indicate that
the 6'3C analysis of the total organic matter of ani-
mals results in a more accurate measure of the §'3C
value of the diet than does the determination of the
8'3C values of their biochemical fractions. Neverthe-
less, analysis of the isotopic distribution among the
biochemical fractions of an animal may, in some
cases, provide information about its dietary history.

Relationships between the 6'3C values of some bio-
chemical components of animals which are often pre-
served in fossil material and the §'3C values of their
diets

Information about the §'3C value of an animal’s
diet may be obtained from its fossil organic remains
if two requirements are met. First, the §'3C value
of some component synthesized by the animal and
preserved in the fossil material must remain unaltered
by diagenetic processes. Second, the relationship
between the 6'*C value of such a component and
the 6'3C value of the diet of the animal in which
it was synthesized must be known. This first require-
ment is often met by biochemical components of ani-
mals, such as collagen, chitin or the organic fraction
of invertebrate shells, which retain their chemical
identity in fossil material (Isaacs ef al., 1963; ROSEN-
HEMM, 1905; WEINER et al., 1976). Accordingly, the in-
fluence of diet on the §'3C values of these com-
ponents was determined.

The 6'3C values of chitin isolated from insect exo-
skeletons, collagen from the bones of mice, and the
insoluble organic fraction of snail shells and the §'3C
values of the animals’ diets are shown in Fig. 8. The
average differences between the 6'3C values of chitin
and the 6'3C value of the animal’s diet for the four
cases analyzed range from +0.1 to +1.7%, There
is considerable variability, ranging up to 3.5%,, in the
613C values of chitin isolated from individuals of a
species raised on the same diet.

The differences between the §'3C values of collagen
samples and the 6'*C value of the diet for mice raised
on diets of JAX 911A or Wayne Lab-Blox F6 are
+3.7%, and +2.8%, respectively. The §'3C values of
collagen samples isolated from individuals raised on
the same diet agree to within the precision of the
analysis.

The §*3C values for the insoluble organic fraction
of Helix (snail) shells isolated from individual snails
whose diet of Romaine lettuce leaves was supple-
mented with Ca;(PO,), are more positive than that
of the diet by up to 1.5%,. The corresponding §!3C
values for Helix individuals in which the same diet
was supplemented with CaCOj (the 6'3C value of
the carbonate being 13.2%, more positive than that
of the diet) are similar, indicating that the contribu-
tion of carbon from the CaCO; to the insoluble
organic fraction of the shell was negligible.
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Fig. 8. 6'3C values of some biochemical components of animals which are often preserved in fossil

material and their diets. Each point represents the analysis of the specified component isolated from

a single animal, except for Sitophilus oryzae (chitin samples from ten animals were combusted together
for each point).

DIETARY ANALYSIS BASED ON THE 6'3C
VALUE OF ANIMAL CARBON

The methods commonly used to determine what
an animal eats involve either visual observation or
analysis of undigested food fragments in its stomach
or feces. These methods are time consuming and are
subject to considerable error, the first due to observer
fatigue and the second due to differential digestability
of different foods. Additionally, the first method does
not lend itself to analysis of fossil situations, although
the second can sometimes be applied if the feces are
preserved.

Dietary analysis based on the determination of the
8!3C value of animal carbon offers a considerable im-
provement over these methods in some modern and
fossil situations. The isotopic procedure consists of
two steps: (1) estimating the 6'*C value of the diet
from the 6'3C value of animal carbon; (2) determin-
ing the relative contribution of potential diet sources
of known 8'3C values which would produce the §'3C
value for the diet estimated in the first step.

The isotopic composition of an animal’s diet can
be estimated from the §'3C value of animal carbon
by taking into account isotope effects during the in-
corporation of diet carbon into the animal. The mag-
nitude of these isotope effects for carbon incorporated
into whole animals and a number of suborganismic
components has been discussed above. Analysis of the
carbon of the whole animal will allow for the most
accurate estimate of the 6'3C value of the diet, since
this carbon serves as an integrator of dietary input.

Analysis of a suborganismic component will generally
provide a less accurate estimate of the 8'°C value
of the diet because the isotopic composition of such
carbon reflects various sources and isotopic fractior
ations during incorporation for which reliable corret:
tions cannot always be made at present. Compounds
such as vitamins or the essential amino acids, which
cannot be synthesized by animals and therefore must
be incorporated directly from the diet, could pro¥
to be exceptions to this rule, since the §'°C valuf’-S
of such compounds in an animal and in its d}el
should be identical, barring fractionation during ™
corporation or metabolism. Analysis of several sp”
mens of an animal species taken from a locally
should further improve the accuracy of the estimat
diet 6'3C value by reducing the uncertainty cau
by variations among individuals.

The isotopic method of dietary analysis can be
applied to fossil material if the original 313C val?
of some component has been preserved. In many fos:
sil situations, the best preserved animal carbon is €
tained in the carbonate fraction of invertebrate Shef
or vertebrate bones. The §'3C values of the shell
bonates of marine and freshwater mollusks are kno¥

to reflect primarily the 8'3C values of CO2 diSSOI;’n
in the water (KEITH et al, 1964; FRITZ s

rather than the diet 6'°C V2

PopLawskl, 1974) £ othef
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qot known. H.owevelj, even if it can. be shpwn that
(here is some dlgtary 1pﬂuence on the isotopic compo-
stion of terrestrial snail shell carbonate, the prospects
or using this value to estimate the §'3C value of
ne diet appear dim, since relati\{ely small contribu-
ions of carbon from atmospheric CO, or ingested
caCO; (RUBIN et al,, 1963}, both of which have §'3C
valves much more positive than diet sources, would
pave a large effect on the §!'3C value of the shell
Carbonate.

The source of carbon in the carbonate fraction of
vertebrate bone has not been established. Prelimi-
pary results indicate that there is dietary influence
on the 813C value of this fraction. The carbonate of
pones taken from three mice raised on a diet of JAX
o{1A (0'°C = —223 £ 0.5%,) have 6'3C values of
126, —12.6 and —12.5%,. Three mice raised on a
diet of Wayne Lab-Blox F6 (!'°C = —19.3 + 0.4%)
have bones in which the §1°C values of the carbonate
fraction are —9.8, —9.8 and —9.8% . The difference
of 3%, between the 6'>C values of the diets is reflected
in the 612C values of the bone carbonates. However,
the 613C values of the carbonate fraction of fossil
bone probably cannot be used for dietary analysis.
Measurements of !*C in fossil bones have shown that
the carbon in the carbonate fraction is exchangeable
with CO, dissolved in groundwater (OLsoN, 1963}
and/or atmospheric CO, (TAMERS and PEARSON,
1965). Thus, the original 3'3C value of the carbonate
fraction is not likely to be preserved in fossil bone.

The relative amounts of potential diet sources eaten
by an animal can be determined from the §!3C value
of the animal’s carbon if the diet sources have suffi-
ciently different §!3C values. In many situations, the
small range and overlap of the §'3C values of poten-
tial diet sources will not permit the determination of
the contribution of each source to an animal’s diet.
In two general cases, however, the potential diet
sources come from groups which differ sufficiently in
4C value so that the relative contribution of each
group to the diet can be measured by determining
the 6'3C value of animal carbon. The 8'3C values
of aquatic plants and animals often do not overlap
those of terrestrial organisms (CRAIG, 1953; DEGENS,
1969; Scuwarcz, 1969). Thus, it should be possible
10 use this difference to determine the relative contri-
bution of these two types of organisms to the diets
of animals living in near-shore environments. The
S§cond case involves C; and C,4 plants as potential
diet sources. The §'3C values of most C, plants range
from —24% to —34%, while most C, plants have
0°C values which lie between —6% and —19%
SMrtH and EpsteIn, 1971). This difference is large
hough so that the relative amounts of C, and C,
Plants eaten by an animal can be determined from
the 3'3C value of its carbon. One especially interest-
'"g application of the isotopic method of determining
dlf:t in this regard would be a field test of the hypoth-
®is that herbivores are selective in avoiding C4 plants
0 their diets (CASWELL et al., 1973).
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