Shielding depths: Absorption of radiation is governed by the amount of mass traversed. Dense media like Pb absorb radiation more efficiently per unit path length than low-density media like water or air.

Therefore it makes sense to measure length in a way that avoids having to specify the density of the material we're working with. We define 'shielding thickness' in units of $\mathrm{g} / \mathrm{cm}^{2}$ - think of the cumulative mass of a column of material with a cross-sectional area $1 \mathrm{~cm}^{2}$.

Given a shielding thickness Z, the equivalent length l (in centimeters) in a material of density $\rho\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ is given by:

$$
\begin{aligned}
& Z=\rho l \\
& l=Z / \rho
\end{aligned}
$$

(1) Calculate the shielding depth at the bottom of a 4 m deep swimming pool.
(2) Calculate the shielding depth of a sample collected from the base of a 4 m deep roadcut, in stratified sedimentary rocks:

Sandstone ($\rho=2.38 \mathrm{~g} \mathrm{~cm}^{-3}$)	
Shale ($\rho=2.14 \mathrm{~g} \mathrm{~cm}{ }^{-3}$)	
Sandstone ($\rho=2.44 \mathrm{~g} \mathrm{~cm}-3$)	

Atmospheric pressure is closely related to atmospheric 'depth'. Pressure P is measured in $\mathrm{Pa}\left(1 \mathrm{~Pa}=1 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}\right.$; kg wt per unit area), so shielding depth below the top of the atmosphere is given by P / g, where g is the acceleration due to gravity $\left(9.807 \mathrm{~m} \mathrm{~s}^{-2}\right)$. The US Standard Atmosphere defines pressure as a function of altitude by:

$$
P(z)=P_{s l} \operatorname{Exp}\left[-\frac{g M}{R \xi}\left(\ln T_{s l}-\ln \left(T_{s l}-\xi z\right)\right)\right]
$$

where P_{sl} is the sea-level pressure $(101,325 \mathrm{~Pa}), \mathrm{M}$ is the molar weight of air $(0.0289644$ $\mathrm{kg} / \mathrm{mol}$), R is the gas constant ($8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$), T_{sl} is sea-level temperature (288.15 K), and ξ is the adiabatic lapse rate (i.e. the decrease in temperature with altitude; 0.0065 K m^{-1}). Numerically, this becomes:

$$
P(z)=P_{s l} \operatorname{Exp}\left[-\frac{0.03417}{\xi}\left(\ln T_{s l}-\ln \left(T_{s l}-\xi z\right)\right)\right]
$$

(3) Calculate the atmospheric pressure at $1000 \mathrm{~m}, 3000 \mathrm{~m}$ and 6000 m altitude. Calculate the shielding depth (below the top of the atmosphere) at each altitude in $\mathrm{g} \mathrm{cm}^{-2}$. Note the shielding depth at sea level is $1033.2 \mathrm{~g} \mathrm{~cm}^{-2}$. Take care with units, and make sure you can get the correct value at sea-level before calculating the high-altitude values.
(4) Based on the formula given in class for the geometric cross-section of a nucleus, show that the total nuclear cross-section of a material of density ρ and atomic weight A is equal to:

$$
0.034 \rho A^{-1 / 3} \quad \mathrm{~cm}^{2} \text { per cm }{ }^{3}
$$

This is usually referred to as the 'macroscopic' cross-section, with units cm^{-1}. Its inverse has dimensions of length, and is a measure of the mean distance a particle will travel between nuclear collisions. Show that this 'mean-free-path' L is equal to:

$$
29 A^{1 / 3} \mathrm{~g} \mathrm{~cm}^{-2}
$$

Calculate L for air, given $\mathrm{A}=14.548 \mathrm{~g} / \mathrm{mol}$.
Based on this value, comment on the probability of a primary cosmic ray proton reaching ground level.
(5) Calculate the threshold energy for fast-neutron induced spallation of ${ }^{16} \mathrm{O}$ to produce ${ }^{10} \mathrm{Be}$:

$$
{ }^{16} \mathrm{O}(\mathrm{n}, 4 \mathrm{p} 3 \mathrm{n}){ }^{10} \mathrm{Be}
$$

Data you will need: \quad Mass ${ }^{16} \mathrm{O}=15.994915 \mathrm{amu}$
Mass $\mathrm{p}=1.007825 \mathrm{amu}$
Mass $\mathrm{n}=1.008665 \mathrm{amu}$
Mass ${ }^{10} \mathrm{Be}=10.013535 \mathrm{amu}$

Suppose instead that the fragments produced by the reaction contain an α-particle:
${ }^{16} \mathrm{O}(\mathrm{n}, \alpha 2 \mathrm{pn}){ }^{10} \mathrm{Be}$
Calculate the threshold neutron energy for this reaction. $\mathrm{M}_{a}=4.002603 \mathrm{amu}$.
Account for the difference between the threshold energies of the two possible reactions.

Compositional data for air:

	Fraction by mass	Molar fraction	Molecular species	Partial pressure (atm)
Carbon	0.000124	0.00015	CO_{2}	0.000383 (in 2007)
Nitrogen	0.755267	0.7844	$\mathrm{~N}_{2}$	0.78084
Oxygen	0.231781	0.2108	O_{2}	0.20946
Argon	0.012827	0.00467	Ar	0.9340

