ESS 312 Geochemistry

Practice problems on geochronology and isochron diagrams

(1) Complete the following table:

You may wish to consult the Table of nuclides, here: or here: http://atom.kaeri.re.kr/index.html? http://www.nndc.bnl.gov/chart/

Parent nuclide	Decay mode(s)	Daughter nuclide	Half-life	Decay const (λ)	Minerals rich in parent element (for geochronology)
⁸⁷ Rb	β-	⁸⁷ Sr	1.42 x 10 ¹¹ yr		K-feldspar, muscovite, biotite
¹⁸⁷ Re					
²³⁴ U					
⁴⁰ K	⁴⁰ Ca				

(2) Carbon-14 ($t_{1/2} = 5730$ years) is produced by cosmic ray reactions in the upper atmosphere, and quickly reacts to form ¹⁴CO₂, which mixes with isotopically normal CO₂ throughout the atmosphere, biosphere and upper oceans. All living organisms (including you) ultimately derive carbon from atmospheric CO₂, and while alive, maintain an isotopic ratio close to:

$$({}^{14}C/{}^{12}C)_{initial} = 1.2 \times 10^{-12}$$
.

After death, ¹⁴C is no longer exchanged and the ¹⁴C/¹²C ratio begins to decrease by radioactive decay. C-14 dating is based on measuring the present-day (¹⁴C/¹²C) ratio in fossil carbon, and comparing it to the initial ratio to determine the time elapsed since death of the organism.

(i) Write an expression for the ¹⁴C age, in terms of the present and initial ¹⁴C/¹²C ratios, and the ¹⁴C decay constant λ .

(ii) While digging potatoes in your back yard, you unearth a mammoth tusk. A sample of protein extracted from the tusk has a ${}^{14}C/{}^{12}C$ ratio of 4.21 x 10⁻¹⁴. How long ago did this mammoth live? Note: $\lambda = 1.21 \times 10^{-4} \text{ yr}^{-1}$.

(iii) What assumptions do you have to make when calculating this 14 C age? What precautions would you need to take when preparing and handling the sample in the lab?

(2) Use EXCEL (or MATLAB, or Mathematica, or Maple, or even graph paper) to plot the following isochron data, and determine the age of the rocks from which they were taken.

(i) Granodiorite intrusion from the Shaw Granitic Complex, underlying Proterozoic rocks of the Mt Bruce Supergroup. (Note - this includes the Hamersley Ranges Banded Iron Formation sequence, ancient sedimentary rocks which mark the growth of oxygen in Earth's atmosphere).

Mineral	Present-day ⁸⁷ Rb/ ⁸⁶ Sr	Present-day ⁸⁷ Sr/ ⁸⁶ Sr
apatite	0.02	0.7014
plagioclase	1.70	0.7732
k-feldspar	5.50	0.9356
biotite	9.00	1.0853

(ii) Garnet-bearing granulite gneiss from the Furua Complex in Tanzania. Metamorphism of this rock is associated with the Pan-African Orogeny, a complex sequence of thermal and tectonic events preceding formation of the supercontinent Gondwana.

Mineral	Present-day ¹⁴⁷ Sm/ ¹⁴⁴ Nd	Present-day ¹⁴³ Nd/ ¹⁴⁴ Nd
apatite	0.211	0.51347
plagioclase	0.552	0.51509
amphibole	0.710	0.51583
garnet	3.224	0.52770

(iii) Jingchuan Ni-Cu-Pt deposit, China.

	Present-day ¹⁸⁷ Re/ ¹⁸⁸ Os	Present-day ¹⁸⁷ Os/ ¹⁸⁸ Os
Whole-rock	6.11	0.2533
molybdenite	34.4	0.6711

You will need the following decay constants:

$$\begin{split} \lambda^{87} Rb &= 1.42 \ x \ 10^{-11} \ yr^{-1} \\ \lambda^{147} Sm &= 6.54 \ x \ 10^{-12} \ yr^{-1} \\ \lambda^{187} Re &= 1.67 \ x \ 10^{-11} \ yr^{-1} \,. \end{split}$$

