ESS 312 Notes on the Origin of the Elements*

• Astronomical gamma ray emission from freshly created ⁴⁴Ti ($t_{1/2}$ = 47 yr)

*Interest only - material will not be on the final exam

• Similarly - gamma ray emission from ^{26}AI ($t_{1/2}$ = 0.7 Myr)

• Christmas Tree Nebula, example of a gas and dust-rich region where stars form

 Supernova 1987A, Large Magellanic Cloud. Composite of photos taken 7, 9 and 10 years after the explosion, showing ring of ejected debris expanding into surrounding gas cloud (Hubble ST; http://www.nasaimages.org).

 Luminosity of SN1987A is sustained by decay of newly-formed radionuclides. Note the amounts - for Co-56 (which will decay to stable Fe-56) that's 23,000 x the mass of Earth!

• Comparison of "cosmic abundances" from C1 meteorites vs the Sun

• The chemical composition of the Sun is derived from absorption spectra

Figure 13.3 Cosmic abundances of the elements, relative to 10⁶ silicon atoms.

- Even-Z elements are more abundant than their odd-Z neighbours
- Notice the high relative abundance of the Fe-Ni-group elements

• Odd-Z vs even-Z effect is even more pronounced for adjacent nuclides

Fig. 2-1 Average binding energy per nucleon as a function of A per stable nuclei. (a) $12 \le A \le 250$, with line connecting the odd-A points.

 Nuclide abundances follow the rules of nuclear stability - high abundances of Fe-Ni group elements are explained by their high nuclear binding energy.

Radio-	Half-life	. ' . D	D	
nuclide	(Myr)	Decay	Daughter	Abundance
	л	Clear	Positive Eviden	ice
146 Sm	103	α	142 Nd	$^{146}{ m Sm}/^{144}{ m S}\sim 0.005$
²⁴⁴ Pu	82	<i>α</i> , SF	fission Xe tracks	244 Pu/ 238 U ~ 0.004-0.007
129 I	16	β	¹²⁹ Xe	$1^{129} I / 1^{127} I \sim 10^{-4}$
¹⁰⁷ Pd	7	β	¹⁰⁷ Ag	107 Pd/ 108 Pd ~ 2 × 10 ⁻⁵
⁵³ Mn	3.7	β	53 Cr	53 Mn/ 55 Mn ~ 4 × 10 ⁻⁵
²⁶ Al	0.7	β	²⁶ Mg	26 Al/ 27 Al ~ 5 × 10 ⁻⁵
		Restric	tive Upper Lin	nits
²⁴⁷ Cm	16	α	²³⁵ U	247 Cm/ 235 U < 0.004
⁴¹ Ca	0.13	β	41 K	41 Ca/ 40 Ca < 10 ⁻⁸

 TABLE 15.1.1

 Short-lived Radionuclides in the Early Solar System

• Short-lived nuclides (now extinct) were also present in the early solar system.

Fig. 15.3.1. Correlation of ¹²⁹Xe (from decay of ¹²⁹I) with ¹²⁸Xe (produced from ¹²⁷I by neutron irradiation) for the enstatite chondrite Khairpur (figure from Kennedy 1981).

• Xe-129 release from a meteorite correlates with I-derived Xe-128. We infer that Xe-129 is the "fossil" daughter of extinct I-129 ($t_{1/2} = 17$ Myr)

Fig. 1. Air corrected $^{132}Xe/^{134}Xe \text{ vs.} ^{131}Xe/^{134}Xe \text{ ratios.}$ The crosses indicate compositions of uranogenic xenon corresponding to U-Xe ages at 500 Ma intervals, increasing from zero at the ^{235}U end member. The solid lines represent a range of expected xenon compositions for zircons with ages in the range 3976 to 4159 Ma and $(Pu/U)_o$ ratios from zero to 0.016. Position of data points to the right of this line is indicative of xenon loss, a conclusion which is independent of $(Pu/U)_o$.

• Evidence of extinct Pu-244 has also been found in ancient Archean zircons