Ionic strength and non-ideal solutions

ESS 312 - Spring 2011

Let's look at the effect of ionic strength on our estimate of gypsum solubility.

Remember that, by assuming $a_i = m_i$ we estimated that a saturated solution of gypsum should contain $m_{Ca^{2+}} = m_{SO_4^{2-}} = 0.005 \text{ mol/kg}.$

We can use this as a starting point to estimate the ionic strength of the solution, and check whether our assumption of ideality was valid:

$$I = \frac{1}{2} \sum m_i z_i^2 = \frac{1}{2} (0.005 \times 4 + 0.005 \times 4) = 0.02$$
(1)

At $25^{\circ}C$, the Debye-Huckel constants are:

А	В	$a_{0,Ca^{2+}}$	$a_{0,SO_4^{2-}}$
0.5085	0.3281×10^{-8}	6×10^8	4×10^8

Hence:

$$\log_{10}\gamma_{Ca^{2+}} = \frac{-A \, z_{Ca^{2+}}^2 \sqrt{I}}{1+B \, a_{0,Ca^{2+}} \sqrt{I}} = -0.225 \tag{2}$$

giving:

$$\gamma_{Ca^{2+}} = 0.596 \tag{3}$$

$$\gamma_{SO_{\tau}^{2-}} = 0.572 \tag{4}$$

Now we can go back and re-write the *equilibrium constant* expression:

$$K_{sp} = a_{Ca^{2+}} \times a_{SO_4^{2-}} = (0.596 \times m_{Ca^{2+}}) \times (0.572 \times m_{SO_4^{2-}}) = 10^{-4.61}$$
(5)

Stoichiometry still requires $m_{Ca^{2+}} = m_{SO_4^{2-}}$, hence:

$$m_{Ca^{2+}} = \sqrt{\frac{10^{-4.61}}{0.596 \times 0.572}} = 0.0085 = m_{SO_4^{2-}}$$
 (6)

Which is 70% higher than we (incorrectly) estimated by assuming the solution would be ideal. Unfortunately we're not done yet, because ...

If $m_{Ca^{2+}} = m_{SO_4^{2-}} = 0.0085$ mol/kg, then I = 0.034, and $\gamma_{Ca^{2+}}$ and $\gamma_{SO_4^{2-}}$ should be lower. Clearly, we need to solve this iteratively: Determine the ionic strength, update the activity coefficients and then re-calculate the concentrations. Repeat with each new set of concentrations, until the values converge, at:

$$I = 0.04; \ \gamma_{Ca^{2+}} = 0.51; \ \gamma_{SO_4^{2-}} = 0.475; \ m_{Ca^{2+}} = m_{SO_4^{2-}} = 0.0101 \ mol/kg$$
(7)

The final concentrations are twice as high as our (erroneous) calculation assuming ideality.

Temperature, °C	A	B (×10 ^{−8})		2.7. Values of d ₁ for Some Individual lons in Aqueous Solutions
0	0.4883	0.3241	å, × 10°	lon
5	0.4921	0.3249		
10	0.4960	0.3258	2.5	Rb+, Cs+, NH‡, TI+, Ag+
15	0.5000	0.3262	3.0	K+, CI-, Br-, I-, NO3
20	0.5042	0.3273	3.5	OH-, F-, HS-, BrO3, 107, MnO7
25	0.5085	0.3281	4.0-4.5	Na+, HCO3, H2PO4, HSO3, Hg2+, SO4-, SeO4-, CrO4-
30	0.5130	0.3290		HPO; -, PO;-
35	0.5175	0.3297	4.5	Pb++, CO3-, SO3-, MoO3-
40	0.5221	0.3305	5.0	Sr++, Ba++, Ra++, Cd++, Hg++, S,WO
45	0.5271	0.3314	6	Li+, Ca++, Cu++, Zn++, Sn++, Mn++, Fe++, Ni++, Co++
50	0.5319	0.3321	8	Mg++, Be++
55	0.5371	0.3329	9	H+, Al ³⁺ , Cr ³⁺ , trivalent rare earths
60	0.5425	0.3338	11	Th*+, Zr*+, Ce*+, Sn*+

TABLE 2.6. Values of Constants for Use in

Figure 1: Graph shows activity coefficients for various ions from Debye-Huckel theory. We will be concerned
only with solutions of ionic strength $\leq 0.1 M/kg$, where the activity-concentration relationships are not too
complicated. The tables below give values for constants in the Debye-Huckel equation. All from: Garrels,
RM and Christ CL, Solutions, minerals and equilibria. Harper and Row (1965).