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Differentiaton:

Redistribution of mass (elements) and
energy by chemical & physical processes.

Goal: Quantitative understanding of those
processes.




TABLE 1-9  Chemical Compositions of Mercury, Venus, Earth, and Mars

Mantle and
crust (%)

Mercury Venus Earth Mars
Si0; 43.647.1 40.4-49.8 45 36.8-49.6
TiO, 0.33 0.2-03 0.15 0.2-0.3
Alz03 4.7-6.4 3.4-4.1 33 3164
MgO 33.7-54.6 33.3-38.0 40 30
FeO 3T 3.4-18.7 8.0 15.8-26.8
CaO 1.8-3.2 32-34 2.65 2.4-5.2
Na;O 0.08 0.1-0.28 0.34 0.1-0.2
Core (%)
Fe 93.5-94.5 79—89 85.5-86.2  64-88
Ni 5.5 4.8-5.5 4.8-3.5 8.0-8.2
S 0-0.35 1.0-5.1 1.0-9.0 3593
o] — 8.0-9.8 0-8.0 0-18.7
Relative
masses
Mantle and crust 32.0-35.2 68.0-76.4 67.6 81-82
Core 64.8-68.0 23.6-32.0 324 18-19

Data from Taylor (1982, 385-386 and 403).

TABLE 21-2
Estimated compositions of the whole Earth, the
mantle, and the continental crust, in weight

percent

Whole Continental

Earth Mantle crust Andesite
510, 479 457 60.2 57.6
TiO; 0.02 0.09 0.7 0.77
AlLD, 39 34 152 173
FeaOy 15 3l
Fel) 89 80 38 4.3
MnO 014 0.4 o1 015
MeO 340 354 3l 16
Cal 32 31 55 7.2
a0 025 04 in 32
K20 0.02 0.1(%) 29 1.5
P,0s 021
H:0 10

Table 4.8 Chemical Composition of

Dry Air

Concentration by Volunie

Constituent % ppm
N, 78084 -
0, 20946 -_
co, 0033 —
Ar 0934 —_
Ne - 18.18
He e 5
Kr — L14
Xe - 0.087
H, = 05
CH, - 2
N0 0.3

Data from the CRE Handbook of Chemisiey ard
Physics {Wenst et al., 1986),
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13 14 15 16 17 | 400

Periodic Table
5 6 7 8 9 10

of the B|C

10.81 | 1201 | 14.01 | 16.00 | 19.00 | 20.18

Elements N EEE

3 4 5 ] 7 8 9! 10 11 12 | 2698 | 28.09 | 30.97 | 32.07 | 3545 | 39.95

21| 22| 23| 24| 25| 26| 27| 28| 29| 30| 31| 32| 33| 34 35| 36

Sc|Ti|V |Cr(Mn|Fe|Co| Ni|Cu|Zn|Ga|Ge|As|Se

44.956 | 47.88 | 50.94 | 52.00 | 5494 | 55.85 58.69 | 63.55 | 6532 | 69.72 | 7261 | 74.92 | 78.96 | 79.90 | B3.80

39| 40 44| 45 47| 48| 49| 50| 51| 52| 53| 54

ai| 4z 46
Y | Zr [Nb|Mo|Tc|Ru|Rh|Pd|Ag|Cd|In|Sn|Sb|Te| I

88.91 | 91.22 | 9291 (97.91) | 101.07 | 10291 | 10642 | 107.67 | 11241 | 114,82 | 118.71 | 121.75 | 127.60 | 126.90 | 131.29

57| 73| 73| 74| 75| 76| 77| 78] 75| 80| 81| 82| 83| 84| 85 86
La |Hf [Ta| W|Re|Os| Ir | Pt |Au Tl |Pb| Bi | Po | At

138.91 | 178.49 | 180.95 | 183.85 | 186.21 | 190.23 | 192.22 | 195.08 | 156,97 | 200.59 | 20438 | 207.2 | 208.98 |(208.98)|(209.99){(232.02)

Ac | Rf |Ha| Sg

(227.03)|(261.11) |(262.11) | {263.12)

58] 59| 60 62| 63| 64| 65 66| 67| 68 69| 70| 71
Ce| Pr|Nd|Pm|Sm| Eu|Gd|Tb |Dy|Ho| Er [Tm|Yb | Lu
140.12 | 140.91 | 144.24 |(144.91)| 150.36 | 151.97 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 | 174.97

90 91| 92
Th|Pa| U |Np|Pu|Am|Cm|Bk | Cf | Es |Fm|Md|No| Lr
232.04 | 231,04 | 238,03 [(237.05) |(244.06)] (243.06) |(247.07) | (247.07) | (251,08} | (252.08) | (257.10 | (258.10) | (259.10) | (262.11)

What controls the periodicity of behavior of the elements?
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Period 7 No. of elecTrons
bp —— z 4
6 65 Sy, A
5p ——
5 s 44— (18) 3
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Y
3 25 0 (8)
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2 2 P (8)
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Figure 1.2. The predicted sequence of orbital energies for elec-
trons in atoms. S levels can hold 2 electrons, p, d, and f can hold

6, 10, and 14 respectively.
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f orbital
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Electronegativity trends in the periodic table. Electronegativity

increases from left to right and generally decreases from top to
bottom.

Low electronegativity = electron donors
High electronegativity = electron acceptors
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Electronegativity difference

“As the electronegativity difference between two atoms increases the bonding electrons are increasingly drawn
toward the more electronegative atom.

When the electronegativity difference becomes extreme the electrons are really no longer shared but can be thought
of being transferred from the cation to the anion (ionic bonding).”

Figure 5-2  Relation between electro-
negativity difference and percent ionic
character, The largest difference there can
be ina bond is 3.3, which is the difference
between the most electronegative element F
(4.0}, and the least electronegative element
Cs (0.7). (After R. Chang. General




Outline (on the periodic table) of the primary element groups:

rare earth elements, actinides, special cases to return to later.
noble gases (unreactive, filled electron shells)

alkali metals (reactive, singly charged, large radii)

alkaline earths (reactive, doubly charged, smaller radii)
halogens (very reactive, negative charge)

PGE’s (cogners of Fe, Ni, Co; rare elements; small radii, can occur in native state)
HFSE (high charge to small radius ratio) Ti-V to Hf-Ta; will see importance of ratio

Finally note the LILE’s

Conclude — now have some general intuition of what elements will behave similarly,

and therefore during differentiation which elements will group together.
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Bond Types

* lonic - electron transferred from one atom to
another

» Covalent - electron shared between atoms

* Metallic - electron location not constrained;
“sea of electrons”

« van der Walls - very weak bond caused by
attraction of dipole molecules, or emf of one
molecule induces polarity of e~ orbits in
another and resulting attraction

lonic Bonding

ORC)

Generally, solid materials with ionic bonds:

* are hard because particles cannot easily slide past one another.

* are good insulators because there are no free electrons or ions (unless dissolved or melted).

* are transparent because their electrons are not moving from atom to atom and less likely to interact with light photons.
* are brittle and tend to cleave rather than deform because bonds are strong.

* have high melting point because ionic bonds are relatively strong.

10



Covalent Bonding

Some Common Features of Materials with Covalent Bonds:

* Hard

* Good insulators

* Transparent

* Brittle or cleave rather than deform

Metallic Bonding

<

Some Common Features of Materials with Metallic Bonds:

* Good electrical and thermal conductors due to their free valence electrons
* Opaque
* Relatively ductile

11



van der Waals Bonding

Polar water molecules
H—-O-H bond angle = 104.5°

Structural Controls on Ionic Bonding

Pauling’s Rules!

— Rule #1: Coordination Principle and Radius Ratios

¢ Each cation is surrounded by a coordination polyhedron (CP). The form of the
CP is defined by the cation and anion radii and the number of anions in the CP is
fixed by the relative size of the cation and anion

¢ The CP and the coordination number (CN) are related and yield well-defined
geometric relationships
Rule# 2: Electrostatic Valency Principle
¢ The total strength of the valence bonds that reach an anion from all nearest
neighbor cations is equal to the charge of the anion
Rule#3: Sharing of Polyhedral Elements I
¢ Face and edge sharing of individual CP within a crystal structure tends to
decrease its overall stability
Rule#4: Sharing of Polyhedral Elements 11
¢ In acrystal with different cations, those with large valence (high positive charge)
and small coordination number tend to not share CP elements (edges and faces)
Rule#5: Principle of Parsimony

¢ The number of different constituents in a crystal structure tends to be small

12



PAULING’S RULES

Rule #1: Coordination Principle and Radius Ratios
a. coordination polyhedra
b. coordination number

Anions
B, \

A

Cation

PAULING’S RULES

O,
I P
R
7L
.
Rx/Rz N. Type
1.0 12 Hexagonal or Cub Closest Packing
1.0-0.732 8 Cubic
0.732-0.414 6 Octahedral
0.414 - 0.225 4 Tetrahedral Yoo
0.225-0.155 3 Triangular €——( -~
<0.155 2 Linear




PAULING’S RULES

Rule #2: Electrostatic Valency Principle

An ionic structure will be stable to the extent that the sum of the strengths of the
electrostatic bonds that reach an ion equal the charge on that ion.

In NaCl each Na+ is surrounded by 6 Cl- ions. The Na is thus
in 6 fold coordination and C.N. = 6.

So 1/6 of a negative charge reaches the Na ion from each CI.
The +1 charge on the Na ion is balanced by 6*1/6 =1 negative
charge from the 6 Cl ions.

Similarly, in the CaF2 structure, each Ca+2 ion is surrounded
by 8 F- ions in cubic or 8-fold coordination. The charge
reaching the Ca ion from each of the F ions is thus 1/4.

Since there are 8 F ions, the total charge reaching the Ca ion
is 8*1/4 or 2. So, again the charge is balanced.

PAULING’S RULES

Rule #2: Electrostatic Valency Principle

An ionic structure will be stable to the extent that the sum of the strengths of the
electrostatic bonds that reach an ion equal the charge on that ion.

A third case arises when the charge reaching the cation is exactly 1/2 the
charge on the anion. This is the case for Si+4 in tetrahedral coordination
with O-2. Here, the charge. reaching the Si is 4/4 =1.

This leaves each Oxygen with a -1 charge that it has not shared. Since this
-1 is exactly 1/2 the original charge on O~2, the Oxygens in the SiO,* group
can be just as tightly bound to ions outside the group as to the centrally
coordinated Si.

S0
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PAULING’S RULES

Rule #3: Sharing of Polyhedral Elements/Components

Shared edges, and particularly faces of two anion polyhedra in a crystal structure
decreases its stability. Distance between cations is maximized.

sharing sharing sharing
corner edge face

Sharing of only corners of polyhedra places the positively charged
cations at the greatest distance from each other.

In the example shown here, for tetrahedral coordination, if the
distance between the cations in the polyhedrons that share corners
is taken as 1, then sharing edges reduces the distance to 0.58, and
sharing of faces reduces the distance to 0.38.

PAULING’S RULES

Rule #3: Sharing of Polyhedral Elements/Components

Shared edges, and particularly faces of two anion polyhedra in a crystal structure
decreases its stability. Distance between cations is maximized.

A 4
- sorosilcate Inosilicate

% (e.g., epidote) (e.g., pyroxene) V
o

= fb
: sheet silicate b‘
4 (e.g., micas)

Cyclosilicate
(e.g., tourmaline)

Sar O \
9
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Substituting elements into crystals:
Goldschmidt’s rules

a)lons of one element can extensively replace
those of another if they have the same
charge and their radii differ by less than
about 15%

b) lons whose charges differ by one unit
substitute readily for one another provided
electrical neutrality of the crystal is main-
tained (requiring coupled substitution). For
more than one unit charge difference,
substitution is quite limited.

c)When two different ions can occupy a
position in a crystal lattice, the ion with the
higher ionic potential forms a stronger bond
with surrounding anions (ionic potential =
charge/radius). Therefore, these elements
are concentrated in early formed minerals

d) Even if size and charge are same,
substitution may be limited if two ions have
different electronegativities, and thus form
bonds of different ionic character

Cations Radii Cuurdinailion Anions
with O

K* 138 A 8,12 i
1.84 A

Na* L2 A

=
o

0000000 ()
Elolo

il
1.81A

ca®*  1.00A

Mn™*  0.83 A
Fe™*  0.78A
Mg 072 A
Fe'*  0.64 A

Ti'*  061A

art osish (O 46

S 0264 @] 4
Ct o 0I5A o 3

FIGURE 5-3
Radii of common ions in rock-forn
ing minerals. (Source: Appendix V1
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Figure 11.2. Abundances of modal mineralogy in
xenoliths from Kilbourne Hole, NM.
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Figurc 4. Ionic radius vs, atomic number for the REE. Ionic radii vary smoothly from La to Lu. Note
that ionic radius depends on the coordination number; values are shown for 6-, 8-, and 10-fold

coordination. Ionic radii in this and subsequent figures are from Shannon and Prewitt (1970) and Shannon
(1976),
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