ESS 312 - Transport models controlled by coupled differential equations

```
(*For the simple 2-box model discussed in class,
these are the equations we want to solve. }\mp@subsup{v}{1}{}\mathrm{ and }\mp@subsup{v}{2}{}\mathrm{ are the amounts of material in
```



```
    exchange coefficient for transport from reservoir 1 to reservoir 2; k}\mp@subsup{k}{21}{}\mathrm{ is the
    coefficient for transport from 2 to 1. We want solutions for vi(t) and va(t),
i.e. the amounts of material in each reservoir as a function of time.*)
```



```
    v}\mp@subsup{v}{2}{\prime}[t]== \mp@subsup{k}{12}{* * }\mp@subsup{v}{1}{}[t]-\mp@subsup{k}{21}{}*\mp@subsup{v}{2}{[}[t]
    v
    v
```


Solutions for $v_{1}(\mathrm{t})$ and $v_{2}(\mathrm{t})$

The solutions are :

$$
\begin{aligned}
v_{1}(t) & =\frac{e^{\left(-k_{12}-k_{21}\right) t} k_{12} v_{1,0}+k_{21} v_{1,0}+k_{21} v_{2,0}-e^{\left(-k_{12}-k_{21}\right) t} k_{21} v_{2,0}}{k_{12}+k_{21}}, \\
\text { and } \ldots v_{2}(t) & =\frac{-k_{12} v_{1,0}+e^{\left(-k_{12}-k_{21}\right) t} k_{12} v_{1,0}-k_{12} v_{2,0}-e^{\left(-k_{12}-k_{21}\right) t} k_{21} v_{2,0}}{k_{12}+k_{21}}
\end{aligned}
$$

which is a bit complicated. No need to see how we got to this, or memorize it for the exam, etc.

Instead, let's just look at the solutions graphically:

Starting from steady state ...

- Starting from different initial conditions ...

$\ln [10]:=$ (*Now start with different amounts in each reservoir: $\mathbf{v}_{1,0}=2$,
$v_{2,0}=6$. The total amount of exchangeable material remains the same $\left(v_{1}+v_{2}=8\right)$. Nonetheless,
both reservoirs end up at the same steady state values as in the previous run.*)
Plot [\{ $\mathbf{v}_{1}[\mathrm{t}] / .\left\{\mathbf{k}_{12} \rightarrow 0.2, \mathbf{k}_{21} \rightarrow 0.333333, \mathrm{v}_{1,0} \rightarrow 2, \mathrm{v}_{2,0} \rightarrow 6\right\}$, $\left.\mathrm{v}_{2}[\mathrm{t}] / .\left\{\mathrm{k}_{12} \rightarrow 0.2, \mathrm{k}_{21} \rightarrow 0.333333, \mathrm{v}_{1,0} \rightarrow 2, \mathrm{v}_{2,0} \rightarrow 6\right\}\right\}$,
$\{t, 0,20\}$, PlotRange $\rightarrow\{0,8\}$, Frame $->$ True, PlotStyle $\rightarrow\{$ Blue, Red $\}$

Why? In this case the initial fluxes are out
of balance: The initial flux from reservoir 1 to 2 ,

```
\phi 12 = k l2 * v v,0 = 0.2 * 2 = 0.4, whereas the flux \phi $ fromreservoir 2 to 1 =
        k}21*\mp@subsup{v}{2,0}{}=0.333*6=2. This imbalance increases the amount of material
        in reservoir 1 and decreases the amount in reservoir 2. Eventually the
        amount in reservoir 1 reaches 5 and the amount in reservoir 2 drops to 3,
    at which point the fluxes come back into balance and the
        system remains in steady state.
```

$\ln [11]:=$ (*The same thing happens if we atart the other way around, with $\mathbf{v}_{1,0}=6, \mathbf{v}_{2,0}=2 . *$)
Plot [$\left\{\mathrm{v}_{1}[\mathrm{t}] / .\left\{\mathrm{k}_{12} \rightarrow 0.2, \mathrm{k}_{21} \rightarrow 0.333333, \mathrm{v}_{1,0} \rightarrow 6, \mathrm{v}_{2,0} \rightarrow 2\right\}\right.$,
$\left.\mathbf{v}_{2}[\mathrm{t}] / .\left\{\mathbf{k}_{12} \rightarrow 0.2, \mathrm{k}_{21} \rightarrow 0.333333, \mathrm{v}_{1,0} \rightarrow 6, \mathrm{v}_{2,0} \rightarrow 2\right\}\right\}$,
$\{t, 0,20\}$, PlotRange $\rightarrow\{0,8\}$, Frame $->$ True, PlotStyle \rightarrow \{Blue, Red $\}]$

How fast does the system return to steady state, and why?

```
(*Look back at the solutions for \(v_{1}(t)\) and \(v_{2}(t)\),
and notice that the time-dependent part of each equation is \(e^{-\left(k_{12}+k_{21}\right)} t\). This indicates
    that after any perturbation to \(v_{1}\) and \(v_{2}\), the system will return to steady-
    state exponentially with a "characteristic timescale" \(\tau=1 /\left(k_{12}+k_{21}\right)\). This is
        the time required to reduce the perturbation by a factor of \(1 / e(\sim 0.368)\). In
        the 3 examples shown above the timescale is \(1 /(0.2+0.333)=1.88\) years.
            By doubling both exchange coefficients we can preserve the same steady state
        distribution of material between the reservoirs, but the system will respond
    twice as fast to any imbalance in the fluxes. With \(k_{12}=0.4 \mathrm{yr}^{-1}\) and \(\mathbf{k}_{21}=\)
    \(0.667 \mathrm{yr}^{-1}\), we have \(\tau=1 /(0.4+0.667)=0.94 \mathrm{yr}\). In the example below,
the return to steady state is twice as fast as in the last example above.*)
Plot [\{ \(\mathrm{v}_{1}\) [ t\(] / \mathrm{f}\left\{\mathrm{k}_{12} \rightarrow 0.4, \mathrm{k}_{21} \rightarrow 0.666667, \mathrm{v}_{1,0} \rightarrow 6, \mathrm{v}_{2,0} \rightarrow 2\right\}\),
            \(\left.\mathrm{v}_{2}[\mathrm{t}] / .\left\{\mathrm{k}_{12} \rightarrow 0.4, \mathrm{k}_{21} \rightarrow 0.666667, \mathrm{v}_{1,0} \rightarrow 6, \mathrm{v}_{2,0} \rightarrow 2\right\}\right\}\),
        \(\{t, 0,20\}\), PlotRange \(\rightarrow\{0,8\}\), Frame \(->\) True, PlotStyle \(\rightarrow\) \{Blue, Red \(\}]\)
```

- Exchange material faster ...

■ ... or slower

(*Halving the original exchange coefficients again preserves the same steady state distribution of material, but slows down the response time of the system.*)
$\left.\begin{array}{rl}\text { Plot }\left[\left\{v_{1}[t] / .\left\{k_{12} \rightarrow 0.1,\right.\right.\right. & k_{21} \rightarrow 0.1666667, \\ v_{2}[t] / .\left\{k_{12} \rightarrow 0.1,\right. & k_{21} \rightarrow 0.1666667, \\ v_{1,0} \rightarrow 6, & \left.v_{2,0} \rightarrow 2\right\}, \\ \left.v_{2,0} \rightarrow 2\right\}\end{array}\right\}$, $\{t, 0,20\}$, PlotRange $\rightarrow\{0,8\}$, Frame $->$ True, PlotStyle \rightarrow \{Blue, Red $\}]$

