Earth & Space Sciences 312: Geochemistry Syllabus: Spring 2015

Instructor:

John Stone 345 Johnson Hall stn @ u

<i>Teaching Assistants:</i> Nick Cuozzo 326 Johnson ncuozzo @ u		Zach Ploskey 423 Johnson zploskey @ u	
Lectures:	Crystal Chemistry Thermodynamics Trace Element Geochemistry Radiogenic Isotopes Midterm exam Aqueous geochemistry Stable Isotopes Global geochemical cycles Final examination	 (3-4 lectures) (4-5 lectures) (4-5 lectures) (3 lectures) Friday, 1 May (4 lectures) (3 lectures) (3 lectures) (3 lectures) Tuesday, 9 June 	30 Mar – 6 April 6 – 17 April 20 – 27 April 29 April – 8 May (in lecture period) 11 – 18 May 20 – 27 May 29 May – 3 June (8:30 - 10:20)

Laboratories:

- Week 1 Review and warm-up problem set (optional attendance)
- Week 2 Silicate crystal chemistry

- Week 3 Determining P and T of mineral formation
- Week 4 Trace element geochemistry (introduction to spreadsheets)
- Week 5 M (27 April) Intro Radioactivity W (29 April): Review Friday (1 May): Midterm in lecture period;
- Week 6 Radioisotopes and mantle differentiation
- Weathering reactions and mineral stability Week 7
- Week 8 Trace elements and stable isotopes in corals
- M: Memorial Day W: Modeling the carbon cvcle Week 9
- Week 10 Finish carbon cycle lab

Textbooks: Either: Geochemistry: Pathways and Processes McSween, Richardson and Uhle. 2nd edition (2003). Columbia University Press.

> Or: Principles and Applications of Geochemistry Faure. 2nd edition (1998). Prentice Hall.

Midterm	25%
Final	35%
Labs	40%
	Midterm Final Labs

		Lectures	Reading McSween & Richardson
1	Mar. 30 Apr. 1 Apr. 3	Crystal chemistry to planetary differentiation Composition of chemical reservoirs in earth Principles that control the distribution of the elements	Ch. 1 (1-5, 9-10) Chapter 2 Ch. 12 (227 – 233)
2	Apr. 6 Apr. 8 Apr. 10	Trace element distribution example - rare earth elements Thermodynamics of geological systems Equilibrium and free energy concepts How changing P and T changes equilibrium	Chapter 3 Review partial differentiation and integration
<u>3</u>	Apr. 13 Apr. 15 Apr. 17	How changing composition changes equilibrium Henry's and Raoult's laws, activity	Chapter 9 Chapter 4
<u>4</u>	Apr. 20 Apr. 22 Apr. 24	Trace element clues to geological processes Element partitioning between minerals and magma, Differentiation and geochemical reservoirs	Chapter 4 Ch. 12 (233 – 262)
<u>5</u>	Apr. 27 Apr. 29 May 1	Radioactivity and geochronology Radiogenic isotope signatures and differentiation <i>Mid-term exam (during lecture period 8:30 - 9:20)</i>	286-294, handouts Chapter 14 (302- 310)
<u>6</u>	May 4 May 6 May 8	Planetary differentiation Global elemental and isotopic reservoirs Nucleosynthesis: age and origin of the elements	Ch 15 (313-323) Ch 4 (71-75), handouts
7	May 11 May 13 May 15	Aqueous geochemistry and natural waters Solubility calculations Non-ideal solutions	Ch 4 (68-76), handouts
<u>8</u>	May 18 May 20 May 22	pH and carbonate equilibria Aluminosilicate reactions, rock weathering Stable isotopes - introduction	143-150 Chapter 7 (111- 121)
<u>9</u>	May 25 May 28 May 30	<i>Memorial Day holiday</i> Stable isotope fractionation, paleothermometry Stable isotope tracers and fingerprinting	Chapter 13 266-271 271-279
<u>10</u>	June 1 June 3 June 5	Global geochemical cycles and time perspectives Carbon and strontium cycles on short and long timescales Review	Chapter 8 Handouts
	June 9	Final exam - Tuesday June 9	8:30 – 10:20 am

Lecture and reading guide (McSween & Richardson, Geochemistry)

Lecture and reading guide (Faure, Principles & Applications of Geochemistry)

		Lectures	Reading Faure
	Mar. 30	Crystal chemistry to planetary differentiation	Chapters 6-8
<u>1</u>	Apr. 1	Composition of chemical reservoirs in earth	Some bckgd in
	Apr. 3	Principles that control the distribution of the elements	Ch 4
	Apr. 6	Trace element distribution example - rare earth elements	Chapter 11
<u>2</u>	Apr. 8	Thermodynamics of geological systems	Review partial
	Apr. 10	Equilibrium and free energy concepts	differentiation and integration
		How changing P and T changes equilibrium	
	Apr. 13	How changing composition changes equilibrium	Chapter 11
<u>3</u>	Apr. 15	Henry's and Raoult's laws, activity	
	Apr. 17		
	Apr. 20	Trace element clues to geological processes	Chapter 4
<u>4</u>	Apr. 22	Element partitioning between minerals and magma,	handouts
	Apr. 24	Differentiation and geochemical reservoirs	
	Apr. 27	Radioactivity and geochronology	Chapter 16,
<u>5</u>	Apr. 29	Radiogenic isotope signatures and differentiation	handouts
	May 1	Mid-term exam (during lecture period 8:30 - 9:20)	
	May 4	Planetary differentiation	Ch 4, handouts,
<u>6</u>	May 6	Global elemental and isotopic reservoirs	Ch 2 for interest
	May 8	Nucleosynthesis: age and origin of the elements	(sections 2.2, 2.3)
	May 11	Aqueous geochemistry and natural waters	Ch 9, 10, 11.8,
<u>7</u>	May 13	Solubility calculations	11.9 (Ch 14
	May 15	Non-ideal solutions	interest only),
	35 10		nandouts
Q	May 18	pH and carbonate equilibria	Ch 12, 13.4, 19,
<u>o</u>	May 20	Aluminosilicate reactions, rock weathering	13.1-13.2 as bckgd
	May 22	Stable isotopes - introduction	
0	May 25	Memorial Day holiday	Chapter 17
<u>9</u>	May 28	Stable isotope fractionation, paleothermometry	handouts
	May 30	Stable isotope tracers and fingerprinting	
10	June 1	Global geochemical cycles and time perspectives	Chapter 22 (17.8,
10	June 3	Carbon and strontium cycles on short and long timescales	20.0) Handouta
	June 5	Review	
	June 9	Final exam - Tuesday June 9	8:30 – 10:20 am