
ESS 312  Geochemistry  Week 5
GEOCHRONOLOGY

This lab deals with the radioactive decay equation.  First we’ll consider the equation in its
differential form, in order to understand the significance of the radioactive decay
constant.  Then we’ll use Excel™ to simulate the decay of a parent isotope and use it to
calculate a simple radiometric age.  Part 2 walks you through an age calculation based on
the isochron method, which we covered in lectures.

Next week we'll expand this treatment to consider an open geochemical system, in which
the parent element and its daughter isotope are transported between different geochemical
reservoirs – an approach that can be adapted to model differentiation of the Earth.  The
results will tell us about the timing of differentiation, element transport rates, and
exchange of elements between the mantle, crust, oceans and atmosphere.  We’ll
encounter the method again later in the course as a way to evaluate the response times of
complex natural systems to perturbations in one or more of the reservoirs.

RADIOACTIVE DECAY AND DAUGHTER ISOTOPE BUILD-UP IN A CLOSED
SYSTEM

Radioactive decay is one of the best-known examples of a truly random, probabilistic
process, in which the chance of an individual atom decaying in a period of time is
constant, regardless of the number of atoms present or the time elapsed since radioactive
decay began.  The decay probability applies to each atom, but it is measured by looking
at a very large sample of atoms and determining the fraction that decays in a given time
period. We call this fraction the "decay constant" λ.  Its dimensions are t-1, or "per unit
time".  A decay constant of 0.1 per year (0.1 yr-1) tells us that, on average, 1/10 of the
atoms present in a system will decay each year.  Mathematically, λ is the constant that
relates the  decay rate of an isotope to its abundance N:
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dN
dt

= − λ N                                                         (1)

A sample that initially contains 106 atoms of an isotope with a decay constant of 0.1 yr-1

decreases by 105 atoms in the first year, leaving 9 x 105 atoms.  The next year, 9 x 104

atoms decay, leaving 8.1 x 105 atoms, and so on.  (A bit like having a 10% annual service
charge on your bank account).  Most of the isotopes used to study differentiation of the
Earth have decay constants on the order of 10-9 – 10-11 yr-1.  (Why must we use isotopes
with such small decay constants?)



The radioactive decay law given in equation (1) above is in differential form.  In other
words, the equation is a statement about the rate of change of N as a function of time.  To
get an exact solution for the value of N as a function of time, we need to integrate
equation (1).  If we specify that the abundance of the isotope at time zero = N0, the
solution is:
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N = N0 e
−λ t                                                           (2)

or as a statement about the fraction of the parent isotope remaining at time t:
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N
N0

= e−λ t                                                           (3)

(1)  From equation (3), derive an expression for the half-life  –  the value of t at
which N/N0 = 1/2.

To illustrate the decay of a radioactive parent isotope such as 14C, set up a simple
spreadsheet:

(i) Set up columns to keep track of t and N.  Enter values for t  from 0 to 20,000 years, in
50 increments of 400 years.

(ii) Set up a cell for the decay constant λ, and give it a value of 1.2097 x 10-4 yr-1.  This is
the established value for the decay constant of 14C.

(iii) Enter 100 as the initial value of N (i.e. N0 at t = 0).

This represents “percentage of modern carbon-14 abundance” which is the standard way
of expressing 14C measurements.  Think of it as a value for the 14C content of atmospheric
CO2, from which living organisms ultimately derive their carbon.  Once an organism
dies, it ceases to exchange its carbon with the atmosphere, and the percentage of 14C
begins to drop due to radioactive decay.

(iv)  Now use equation (3) to fill in the remaining values of N corresponding to the values
of t.



(2) Graph the abundance of the parent radioisotope through time on a linear N vs
linear t plot.

(3)  Now produce the same graph on a log(N) vs linear t plot (Create a new plot,
click on the y-axis to get the “Format axis” dialog box, and click on the ‘logarithmic
scale’ button under the ‘Scale’ tab).  This should remind you of the relationship
between the logarithm and exponential functions.

(4) At what time does the abundance reach 1/2 of the initial value?  1/4?  1/8?  Is the
interval between these points the same in each case?  Estimate the "half life" of 14C
and compare it to an exact value derived using the expression you came up with for
question (1).

(5) In 2000 a mammoth tusk was uncovered by construction workers remodeling the
playground at Lakeview Elementary School in Kirkland.  Subsequent 14C
measurements on the tusk gave a value of 12.47% compared to modern 14C activity.
Use your spreadsheet or graphs to calculate the age of the tusk.

(News links to this are mostly dead now, but another good site for mammoth
excavations is the La Brea Tar Pits, on Wilshire Boulevard in Los Angeles, just
down the hill from Hollywood.  See
http://www.tarpits.org/education/guide/flora/mammoth.html).

(6) What assumptions do you have to make in order to estimate this age from the 14C
data?



Part 2:  Isochron Diagrams for dating co-genetic rocks or minerals

For most radioactive isotope systems, we cannot make simple assumptions about the
initial parent abundance, nor can we distinguish between atoms of the daughter isotope
produced by decay of the parent, and those that were present at the time the rock formed.
Faced with more than one unknown, we make use of the “isochron” equation (derived in
class):
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Here D is the daughter isotope, N the parent and S is a stable, non-radiogenic isotope of
the same element as the daughter.  So for the 87Rb-87Sr system, this would read:
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This predits that a family of samples that formed with the same 87Sr/86Sr ratio, but
different 87Rb/86Sr ratios, should plot on a line in a diagram with co-ordinates y = 87Sr/86Sr
and x = 87Rb/86Sr.  The slope of the line will depend on the time elapsed since the samples
formed, and is given by: slope = (eλt – 1).  Thus by measuring 87Sr/86Sr and 87Rb/86Sr
ratios in a family of co-genetic rocks or minerals and fitting a line through the data, we
can determine their age.  Try it:

The following data are analyses of chondritic meteorites:

87Rb/86Sr 87Sr/86Sr
0.4716 0.7300
0.6222 0.7399
0.8312 0.7536
0.3387 0.7213
0.8088 0.7522
0.5426 0.7346
0.3543 0.7222
0.5063 0.7322
0.7160 0.7460
0.0013 0.6989



0.9462 0.7613
0.9103 0.7588
0.8950 0.7578
0.9264 0.7599

(7)  Use Excel to plot these data in co-ordinates x = 87Rb/86Sr and y = 87Sr/86Sr .  You
can use the “Add Trendline” command in the “Chart” menu to fit a line through the
data.  Select “Display equation on chart” from the trend-line options to find the
slope of the line.  Use this to calculate the age of this family of meteorites. You will
need the decay constant for 87Rb: λ = 1.42 x 10-11 yr-1.

(8) What assumptions are you making in calculating the age?  How can you tell
from the data if these assumptions are likely to be valid?

(9) What was the initial 87Sr/86Sr ratio of Sr in the meteorites at the time of
formation?

(10) Rocks in the Earth’s crust typically contain Sr with a 87Sr/86Sr ratio of ~ 0.710.
We think the bulk Earth average 87Sr/86Sr ratio is ~ 0.7047.  How do these values
compare to the initial  87Sr/86Sr ratio you calculated for the meteorites in question
(9)?  What can you infer about the average 87Rb/86Sr ratio of the bulk Earth and the
crust?  How must Rb fractionate relative to Sr in the melting processes that form
continental crust?


