ESS 312 Lab 3-Making diamonds - answer sheet

Q1 (a) \quad graphite $+\mathrm{O}_{2} \leftrightarrow \mathrm{CO}_{2}$
$\Delta H=$
$\Delta \mathrm{S}=$
diamond $+\mathrm{O}_{2} \leftrightarrow \mathrm{CO}_{2}$
$\Delta \mathrm{H}=\quad \Delta \mathrm{S}=$
(b) graphite \leftrightarrow diamond

$$
\Delta \mathrm{H}=
$$

$$
\Delta \mathrm{S}=
$$

(c) $\Delta \mathrm{G}_{\text {graphite } \leftrightarrow \text { diamond }}=$
at $298 \mathrm{~K} / 1$ bar (include units).

The stable polymorph at $298 \mathrm{~K} / 1$ bar is:

Q2 (a) $\Delta \mathrm{G}_{\text {graphite }} \leftrightarrow$ diamond $\left(\mathrm{T}, \mathrm{P}_{\mathrm{r}}\right)=$
(b) Enter values for each piece of the formula (write out expressions for each of the definite integrals before substituting values into them):
$\Delta \mathrm{G}_{\text {graphite }} \leftrightarrow$ diamond $\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)$

$$
\begin{aligned}
& +\mathrm{T}_{\mathrm{r}} \Delta \mathrm{~S}_{\text {graphite } \leftrightarrow \text { diamond }}\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right) \\
& +\int_{T_{r}}^{T} \Delta C_{P, \text { graphite } \leftrightarrow \text { diamond }} d T \\
& -\mathrm{T} \Delta \mathrm{~S}_{\text {graphite } \leftrightarrow \text { diamond }}\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right) \\
& -\int_{T_{r}}^{T} \frac{\Delta C_{P, \text { graphite } \leftrightarrow \text { diamond }}}{T} d T
\end{aligned}
$$

Add these up to get $\Delta \mathrm{G}_{\text {graphite }} \leftrightarrow$ diamond $(1300,1$ bar) $=$
(c) $\Delta \mathrm{G}_{\text {graphite } \leftrightarrow \text { diamond }}(\mathrm{T}, \mathrm{P})=\Delta \mathrm{G}_{\text {graphite } \leftrightarrow \text { diamond }}\left(\mathrm{T}, \mathrm{P}_{\mathrm{r}}\right)+$
(d) Co-existence pressure $\left(\Delta \mathrm{G}_{\text {graphite } \leftrightarrow \text { diamond }}(1300, \mathrm{P})=0\right)$:

Q3 Clapeyron slope:
$\Delta \mathrm{S}_{\text {graphite } \leftrightarrow \text { diamond }}=$
$\Delta \mathrm{V}_{\text {graphite }} \leftrightarrow$ diamond $=$
(use $298 \mathrm{~K} / 1$ bar values; include units).
(use $298 \mathrm{~K} / 1$ bar values; include units).
$\mathrm{dP} / \mathrm{dT}=\Delta \mathrm{S} / \Delta \mathrm{V}=$

Q4 What do your results imply about the origin of these diamonds, and the structure and development of the oldest (Archean) continents preserved on Earth?

