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Abstract—Information theoretic techniques are often used to in-
vestigate neural coding. Results — in terms of bits per second or
bits per spike — have been used as evidence to support temporal
or rate coding, spike timing precision, etc. Despite its use this way,
information theory does not tell one what the neural code (or any
code) is. In artificial systems, codes are often purposefully made
sub-optimal from a pure information density point of view. This
work tests the feasibility of a neural code containing error correc-
tion characteristics which uses greater spike timing precision than
might be necessary to simply transmit a given amount of informa-
tion. A model of the recognized prototype of an inhibitory synapse
shows that, even compared to small input imprecision and in the
presence of robust dynamical behaviors, high timing precision can
enable error correction.

Index Terms— spiking neurons, information theory, error cor-
rection, neural coding, nonlinear dynamics.

I. I NTRODUCTION

I NFORMATION theory provides general techniques for
characterizing signal content or channel capacity. As such,

it has been used with increasing regularity as a tool for investi-
gating neural coding [1], [2], [3]. By comparing neuron output
with sensory stimuli or presynaptic trains, researchers have con-
cluded that certain preparations utilize temporal [4] or rate [5]
coding, what their channel capacity is [6], etc.

What often has been lost in this work, however, is that in-
formation theory doesnot inform about the nature of the code
used by a system, but only how efficient a carrier of information
it is. In other words, it tells you how close a code is to being
“optimally compressed”. Moreover, one can only learn about a
channel’s characteristics if one knows what the channelis: for
example, the distinction between the encoded data transmission
and channel noise (source vs. channel coding). Because of this,
conclusions about neural coding must be made carefully:
• Presynaptic spike trains are sometimes used as the refer-

ence in determining postsynaptic information capacity [3].
This treats a neuron as a pure encoder. However, neurons
are dynamical systems, and their internal state certainly
affects their discharge. To the extent that a neuron’s inter-
nal state represents information to be transmitted to other
cells, these approaches underestimate capacity.

• The idea that neurons are noisy and unreliable has great
currency in the literature, based on observations that spike
trains look “messy” and that multiple experiments with
identical stimuli produce different discharges. These are

weak definitions of noise: “variation of a measured quan-
tity from some expected value” in the first case and “what-
ever is not of interest” in the second [7]. Use of spike train
variability as a noise floor in channel capacity estimation
only establishes a lower bound on information content, as
it ignores the effects of any persistent internal state.

• An apparently low information rate (in bits per spike)
might be taken as evidence for rate coding. This presup-
poses that one knows what data is being coded, arguably
only feasible for sensory cells [1], [6], [8], [4], [5]. In
any event, this at best establishes that the neural code is
not optimally compressed, which is not the same thing as
determining that there is no “extra content” in the code.

• In artificial systems, there are many reasons for not using
optimally compact codes, including convenience, compat-
ibility with other systems, encoding/decoding complexity,
and error correction. The observation that a code contains
redundancy is not the same as determining that the redun-
dant information is not used. For example, one could ana-
lyze the information content of an audio compact disc: the
fact that each bit of data carries less than one bit of infor-
mation does not mean that not all of the bits are used (nor
does it tell one what the code is or what is being encoded).

• It is not unreasonble that similar considerations may be
applicable to biological systems. Neuron construction and
neural architectures have definite (though unknown) limits
to their processing power. If we assume that neuron oper-
ation contains significant “noise” uncorrelated with infor-
mation to be transmitted, then this would be expected to
inject errors into the data stream. This argues for codes
with significant, and useful, redundancy.

The work described here is a preliminary test of the feasibil-
ity of the hypothesis that neural codes can contain redundancy
for the purpose of error correction. It presents a simple, bio-
logically plausible system that performs its function more re-
liably if provided with “extra information”. More specifically,
a model of a prototypical inhibitory synapse and postsynaptic
neuron is presented with low and high temporal precision pace-
maker presynaptic (input) spike trains with and without errors.
Error aftereffects are then compared to determine if higher tem-
poral precision — more information in the input — can support
faster recovery (faster return to the nominal output) — greater
error-correction capability.
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Fig. 1. Point process analysis. Analysis is based on intervals (Ik, Ti) and
cross intervals (φi).

II. M ETHODS

A well-characterized model of the crayfish slowly-adapting
stretch receptor organ (SAO) [9] was used. The living prepara-
tion includes the recognized prototype of an inhibitory synapse;
the model, summarized in the Appendix, reproduces well the
behaviors seen in the living preparation [10], [11]. Simulations
were conducted using the ODEPACK library [12] in C, with
input generation and analysis performed using MATLAB [13].

In the absence of inputs, the SAO acts as a pacemaker, pro-
ducing action potentials (APs, outputs) all separated by itsnat-
ural interval,N . Inputs are presented as postsynaptic potentials
(PSPs) produced by transient changes in membrane chloride
permeability. In this work, the PSP and AP trains are assim-
ilated to point processes (i.e., only their times of occurrence are
used). Figure 1 presents the essential terminology. PSPs and
APs are numbered, with PSPk occurring at timesk and APi
at ti. From these times, presynaptic intervalsIk, postsynaptic
intervalsTi, and cross intervals (orphases) φi can be computed.

When a nonlinear oscillator such as the SAO is presented
with periodic input (Ik = I,∀k), a number of stereotypical be-
haviors are possible. In both the SAO and this model, phase
locking, quasiperiodicity, and chaos have been observed [14],
[15], [16], [17], [18], [11]. For this preliminary work, PSP tim-
ing and strength was selected to produce 1:1 locking. In ap:q
locked behavior,p PSPs andq APs occur in the same period
of time,pI = qT , whereT is the average postsynaptic interval.
Locking is periodic, so the sequence of intervalsTi and cross in-
tervalsφi repeat everyq (i.e.,Ti = Ti+q andφi = φi+q). These
q intervals are readily apparent as horizontal lines inbasic plots:
plots ofTi orφi versusti. The fact that the intervals repeat with
periodq can be verified by areturn mapplotting (Ti, Ti+q) or
(φi, φi+q). In such a plot, all intervals in ap:q locked behavior
would fall on the diagonal (Ti = Ti+q or φi = φi+q, ∀i).

To determine the perturbations introduced by errors, acanon-
ical, high-temporal-precision PSP train,H = {s1, s2, . . . , sn}
was first generated (Figure 2(a), left). Pacemaker stimulation
was used, so all PSPs were separated by an invariant interval,I
(i.e., Ik = I, ∀k). The intervalI was chosen so that the model
would produce 1:1 locking. Errors were introduced by eliminat-
ing PSPs (b, dotted lines) [19]. The set of PSPs to be eliminated,
K = {k1, k2, . . . , km}, at timesS = {sk1 , sk2 , . . . , skm

} (the
errors) was generated randomly so that the average separation
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Fig. 2. Input generation and output perturbation. A sequence of input PSPs
(left column) is presented via an inhibitory synapse to the SAO (middle col-
umn), producing a sequence of spikes, or APs (right column). High precision
(a and b) and low precision timing (c and d) were used, both without (a and
c) and with (b and d) errors (missing PSPs). Errors result in perturbed outputs
(a–d, right column, arrows). Perturbation is measured by computing cross inter-
vals between APs just after an error (e, bottom train) and APs in the matching
error-free simulation (e, top train).

between errors was� I; this allowed the system to return to
its nominal (error free) state between errors. This was then
used to produce a high temporal precision train with errors,
He = H− S (b, left), termed anerroneous train.

A number of low precision PSP trains were then generated.
These trains were intended to be possible low precision coun-
terparts of the canonical train, illustrated in Figure 2(c) by
the grey bars. In such a train, the presence of a PSP at any
time during some window (width determined by the amount of
temporal precision) would be considered to convey the same
information. “Jitter” valuesuk, taken from a uniform dis-
tribution with range±wI, w < 1, were used to alter the
time of each canonical PSP to produce a low precision train,
L = {s1 + u1, s2 + u2, . . . , sn + un}. The value ofw was
selected so that it would not alter the model’s dynamical behav-
ior: in this case, that meant that the result was an “imprecise”,
or “noisy” 1:1 locking. The same errors as used in the high
precision case were then introduced — the same PSPsK were
removed — to produce low precision erroneous trainsLe (d,
left).

Analysis focused on the times just before and after errors in
matched pairs of simulations(H,He) or (L,Le). Because of
the comparatively long separation between errors, it was ex-
pected that the model’s postsynaptic discharge (APs, right col-
umn in Figure 2) would be identical just before the error for
both of the matching error-free and erroneous train pairs. This
was verified by the analysis (see Results). For each error time
skj

∈ S, the few APs just before and after were compared
to those in the error-free train to determine the perturbation
induced by the missing PSP. This comparison, shown in Fig-
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3ure 2(e), was done by plotting the temporal difference (cross
interval)ψi between the AP in the response toHe orLe at time
ti and the AP in the response toH or L at timemaxt′

i
≤ti

t′i:
the “matching” AP in the error-free case. This was then plotted
versus the time from error occurrence (cross intervalti − skj

)
to produce aperturbation plot. The erroneous train’s APs were
used as the reference because the inhibitory nature of the PSPs
meant that errors causedpostsynaptic acceleration. As a result,
the erroneous train had more APs than the error-free train; us-
ing these APs as reference events assured that none would be
missed in the analysis.

A perturbation plot can be used directly to judge recovery
time in the high precision case, as each error produced identical
responses. The perturbation pointspH,L

i = (ti − skj
, ψi) were

used to compare perturbation recovery time for high (pH) ver-
sus low (pL) precision inputs. The same number of pointspLi
were in all low precision perturbation plots; this was also the
number ofpHi in the high precision one. Each of these points
was assigned to one ofc clusters, based onti − skj , corre-
sponding to the AP just before an error, the AP preceding that
one, etc., and the AP just after an error, the AP after that one,
etc. From error to error, these AP times will vary somewhat,
but that variation is much less than the interspike interval, and
so ti − skj will be tightly clustered aroundc values (c being
selected when making the plot). Therefore, for each errorkj

at timeskj
(j = 1, 2, . . . ,m), there will bec APs, occurring

at times(tj,1, tj,2, . . . , tj,c). This is illustrated in Figure 2(e)
for c = 4, wheretj,1 = ti−1, tj,2 = ti, tj,3 = ti+1, and
tj,4 = ti+2. Conversely, for a clusterg (g = 1, 2, . . . , c), there
arem APs, one corresponding to each error (at timesS).

Using this nomenclature, the perturbation that corresponds to
an AP at timetj,g (thegth AP around error numberj) is ψHj,g
(for high precision inputs) orψLj,g (for low precision inputs).
Let us assign to clusterg a single timeeg = tj,g − skj as the
mean of the offset of each spike in that cluster (over all of the
simulations — high and low precision — taken together) from
its corresponding error. We can then compute the difference
δj,g = ψLj,g − ψHj,g for each low precision AP, yielding the set
δg = {δ1,g, δ2,g, . . . , δm,g} for all APs in a cluster. Arecovery
plot is a plot of the range ofδg, ∆g = max(δg) − min(δg),
versus cluster timeeg. The low precision train was considered
to be fully recovered from an error when the∆g returned to its
pre-error value.

III. R ESULTS

Figures 3 through 6 present basic plots and return maps for
high precision (3 and 4) and low precision (5 and 6) PSP trains.
The presynaptic interval (exact for high precision, average for
low precision) wasI = 0.186456s, which, for a natural inter-
val N = 0.104415s, yieldedN/I = 0.56. The high precision
plots clearly show a 1:1 locking behavior, with theTi = I upon
application of the PSP train. For the low precision train, the in-
accuracy wasw = 0.01, yielding−0.00186 ≤ uk ≤ 0.00186.
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Fig. 3. Postsynaptic interval basic plot, high precision PSP train starting at
20s.
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Fig. 4. Phase return map, high precision PSP train, for all APs after 30s.

100 200 300 400 500 600 700 800 900
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time (s)

In
te

rv
al

 (
s)

Fig. 5. Postsynaptic interval basic plot, low precision (±1%) PSP train starting
at 20s.
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Fig. 6. Phase return map, low precision (±1%) PSP train, for all APs after
30s.
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Fig. 7. Perturbation plot for high precision input. Number of missing PSPs,
m = 98.

Figure 5 shows that, over the entire 1000s simulation, postsy-
naptic intervals resembled presynaptic ones. That this postsy-
naptic variation was caused by the presynaptic jitter is verified
by Figure 6, which shows that cross intervals (phases) between
APs and PSPs were almost invariant. This means that variation
in the response of the SAO directly followed variation in its in-
put: each PSP substantially reset the neural oscillator’s phase.
All further results are based on this high precision simulation
and ten low precision simulations with identical parameters.

Errors were generated so that at least 5 seconds separated
each. Figure 7 is a perturbation plot for a high precision situa-
tion, (H,He). As described in Methods, this graph plots cross
intervals between APs in the erroneous and error-free trains
around the time of the missing PSP versus time relative to that
of the missing PSP. So, zero on the X-axis is the time of the
missing PSPskj

and all cross intervals around all errors are
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Fig. 8. Perturbation plot for low precision input. Number of missing PSPs,
m = 98.

superimposed, orpooled, to produce the graph.

Despite the pooling of multiple perturbations, there is no no-
ticeable spread among the points plotted, supporting the conclu-
sion that each missing PSP produced an identical perturbation
in the high-precision situation. Additionally, all points have a
perturbation of 0 just beforeτ = skj

indicates that the model
was firing at identical times in both the error-free and erroneous
cases. Absence of a single inhibitory PSP allowed the model to
fire earlier than it otherwise would have — only a bit over 0.1s
after the preceding AP — and in fact faster than its natural in-
terval. This is the well-known post-inhibitory rebound. The
second APs are also perturbed; in fact, the erroneous trains ex-
amined here always produced one more PSP than the error-free
ones after each error.

For comparison purposes, Figure 8 pools the perturbation re-
covery for low precision input for 98 errors. Here, there is little
dispersal of the time of the first AP after an error (neart = 0)
and noticeable dispersal of the time of the second AP after an
error (on the order of 10ms).

Next, the aftereffects of the error were compared between the
multiple low precision trains and the high precision train. The
recovery plot is presented in Figure 9. This displays the range of
differences in perturbations between the low and high precision
cases for all errors in all ten low precision trains (a total of 980
errors over 10,000s simulation time). Up until the error time,
the difference was negligible (around 5µs); it is assumed that
this represents a sufficient test of significant perturbation differ-
ence. Note that the range of perturbation differences for the first
post-error APs was 0.16ms, while the second’s was much larger
at 7.2ms. Thereafter, there was a short period of “ringing”, and
then an approximately exponential decay with a time constant
of 1.15s. As a result, there could be a significant perturbation
difference for twenty or more APs — more than 3.5s.
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Fig. 9. Comparison of perturbation recovery in low and high precision simu-
lations.

IV. D ISCUSSION

Preliminary results have been presented that support the hy-
pothesis that high temporal precision in a presynaptic spike
train could be used as an error correction mechanism. Errors
were missing PSPs, and error correction was determined by
how quickly the neuron returned to its error-free firing times.

Figure 9 plots therangeof differences between all low and
high precision error responses. Those responses are the differ-
ence in AP timing between simulations identicalin every way,
except for the one missing PSP at timeskj

. This is evidenced
by all trains having APs at almost precisely the same times just
before the missing PSP.

These simulations used powerful PSPs, each greatly resetting
the neuron’s state. This is apparent in Figures 8 and 9: the first
AP after an error had much smaller variability than the low pre-
cision PSP times (0.16ms versus 3.8ms). So, regardless of the
varying history of preceding PSPs, the time of the next AP was
mostly determined by the most recent PSP’s timing. This sug-
gests that there is a fast time constant of post-inhibitory rebound
that is mostly governed by the cell’s own internal dynamics.

The second AP after an error (which occurredafter the first
“post-error” PSP) had variability on the order of twice the PSP
inaccuracy (7.2ms versus 3.8ms). This indicates that PSPs
don’t completely reset the cell’s state — that the memory of pre-
vious PSP variation shows through at a somewhat longer time
constant. Additionally, that fact that the low precision trains had
a range of perturbed responses thereafter wasnot due to differ-
ences in PSP times after the error, as PSPs occurred at exactly
the same times for erroneous and error-free simulations. This
range of perturbations was, instead, also a long-term aftereffect
of different histories of PSP times before thedifferenterrors. In
other words, the time it took to recover from an error depended
on the timing of more than one PSP before the error.

The durability of internal neuronal state is key to both error
correction and computation. In the presence of stationary input,
a neuron’s state will evolve along someattractor in its state
space. High precision input will result in a state that closely
follows this attractor; the variation in low precision input moves
the state off the attractor. In effect, the neuron’s state in the low
precision case is a “ball”, rather than a point, with the size of the
ball determined by the input imprecision. Because the state is
likely to be away from the attractor, it quite often takes longer to
return to the attractor’s vicinity after a perturbation (error). How
much longer depends on the gradient of the attractor basin.

The simulations performed here are viewed as an especially
demanding test of the hypothesis. The dynamical behavior se-
lected, phase locking, is the most robust in the presence of
presynaptic variability [10]. The moderately powerful PSPs
used almost completely reset the neuronal oscillator’s state. Ad-
ditionally, only a small degree of imprecision (±1%) was used.
Therefore, it is expected that this can serve as a reasonable
lower bound on the amount of error correction possible with
highly precise temporal coding in spike trains.

APPENDIX

The model was initially developedfor the lobster SAO and
FAO (fast adapting stretch receptor organ) [9] and modified to
match the pacemaking behavior of the crayfish SAO (using a
bias current (1) and to include an inhibitory synapse (6). Two
ionic fluxes, Na+ and K+, are controlled by voltage-sensitive
permeabilities,PNa andPK (2, 3). Three leakage permeabilities,
PL,Na, PL,K, andPL,Cl, present constant pathways for Na+, K+,
and Cl− fluxes, respectively (4). Two active pumping pathways,
Ip,NaandIp,K work to maintain internal ionic concentrations (5).
The membrane also has an associated capacitance,Cm (1).

Presynaptic inputs cause fixed-duration changes in the synap-
tic permeability,Psyn, to Cl− [20]. The membrane potential
equation is presented in equation (1), where the currentsIX (for
typeX) are computed from ionic fluxes as shown in (2–6).

dVm/dt = −(INa + IK + IL,Na + IL,K + IL,Cl

+Ip + Ibias + Isyn)/Cm (1)

INa = AP̄Nam
2hl

VmF
2

RT

× [Na+]o − [Na+]i expFVm/RT

1− expFVm/RT
(2)

IK = AP̄Kn
2r
VmF

2

RT

× [K+]o − [K+]i expFVm/RT

1− expFVm/RT
(3)

IL,X = APL,X
VmF

2

RT

× [X]o − [X]i exp(FVm/RT )
1− exp(FVm/RT )

(4)
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Ip =
AF

3
J̄p,Na(

1 + Km

[Na+
]i

)3 (5)

Isyn = AP̄syn
VmF

2

RT

× [Cl−]o − [Cl−]i expFVm/RT

1− expFVm/RT

×
∑
∀sk<t

(e(sk−t)/τ+ − e(sk−t)/τ−) (6)

HereA is the cell membrane area,̄PX is the maximum per-
meability to ionX, m, h, l, n, andr are gating variables,T is
absolute temperature, andF andR are the Faraday and univer-
sal gas constants. The pumping mechanism exchanges 3 Na+

ions for 2 K+ in (5), whereJ̄p,Na is the maximum Na+ pump
capacity andKm is a constant.[Cl−]i, [K+]i, and[Na+]i are
assumed constant. The gating variables’ kinetics are defined
by (7) (whereg ∈ {m,h, l, n, r}), with asymptotic valuesg∞
and time constantsτg given by (8) and (9).

dg/dt = (g∞ − g)
1
τg

(7)

g∞ = νg +
1− νg

1 + exp
[ zge

kT (Vm − Vg)
] (8)

τg = Qg τ̄g

/ {
exp

[
δgzge

kT
(Vm − Vg)

]

+exp
[
(δg − 1)zge

kT
(Vm − Vg)

]}
(9)

Qg =
(

1− δg
δg

)δg

+
(

1− δg
δg

)δg−1

(10)

νg is the minimum relative channel permeability,zg the ef-
fective valency of the gating structure,e the electron charge,Vg

the membrane voltage at which half of the gating system is in
its “open” state,̄τg the maximum value ofτg, andδg the degree
of energy barrier asymmetry (between 0 and 1).
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