
Signal Computing:
Digital Signals in the Software Domain

Laboratory Manual: Matlab Edition

Spring 2020

Michael Stiber
Bilin Zhang Stiber
University of Washington Bothell
18115 Campus Way NE
Bothell, Washington 98011

Eric C. Larson
Southern Methodist University
Lyle School of Engineering
3145 Dyer Street
Dallas, TX 75205

Copyright © 2002–2016 by Michael and Bilin Stiber and Eric C. Larson

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0
International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/.

http://creativecommons.org/licenses/by-sa/4.0/

CONTENTS 1

Contents

0 The Matlab Lab, or How to Not Teach a Programming Language 3
0.1 Matlab in a (Very Small) Nutshell . 3
0.2 Trigonometric Functions and Complex Mathematics in Matlab 7
0.3 Representing Analog, Discrete, and Digital Signals 8

1 Let’s Get Physical 10
1.1 Beating . 10
1.2 Fourier series representation of a physical signal 11

2 Hello, Digital! 12
2.1 Sampling . 12
2.2 Analog to Digital Conversion . 13

3 Feed It Forward 15
3.1 Overview of Filtering and Matlab . 15

3.1.1 From Filter Coefficients to Transfer Function and Frequency Response 17
3.1.2 From Zero Placement to Filter Coefficients 17

3.2 Frequency Response and Pole-Zero Plots . 18
3.3 Linearity and Cascading Filters . 20

4 Let’s Catch Some Z’s 21
4.1 The z-transform, Transfer Function, & Impulse Response 21
4.2 Z-Transforms . 22
4.3 Impulse Response . 22
4.4 Canceling Sinusoidal Components . 23

5 To Infinity and Response! 24
5.1 A Note About Matlab Filter Coefficients . 24
5.2 Feedback Filters as Recurrence Relations . 24
5.3 Telephone Touch Tone Dialing . 25

6 Joe Fourier Was Not a Discrete Fellow 28
6.1 Lab Background . 28
6.2 Implementing the DFT . 28
6.3 The FFT in Matlab . 29
6.4 Using the DFT . 30
6.5 Spectrograms . 30

Signal Computing Laboratory Manual

CONTENTS 2
7 I’m So Compressed 32

7.1 Sound and images in MATLAB . 32
7.1.1 Data Types . 33

7.2 Lossless image coding . 33
7.3 Lossy audio coding: DPCM . 34
7.4 Lossy image coding: JPEG . 36

Signal Computing Laboratory Manual

0 THE MATLAB LAB, OR HOW TO NOT TEACH A PROGRAMMING LANGUAGE3

0 The Matlab Lab, or How to Not Teach a Programming
Language

Labs in this class will make liberal use of the Matlab numerical programming environ-
ment. Because this class assumes that you are an experienced computer science student,
you are expected to be able to learn how to use computer tools, and how to program in
new programming languages, pretty much on your own. So, the first thing you should do
is check out the Matlab documentation built into the Matlab help system, or online at
http://www.mathworks.com/help/matlab/index.html. Of course, you can always search
online for Matlab tutorials and the like. We’ll include a very brief overview of Matlab below,
and then more detailed information about the code developed specifically for this class that
you will be using.

0.1 Matlab in a (Very Small) Nutshell

The Matlab GUI environment is very similar to IDEs that you are already familiar with.
As you might expect, there are some idiosyncrasies here and there, but nothing terribly
unexpected. The major areas of difference are tools and panes that have to do with viewing
variables (something in other IDEs that you’d only see when debugging a program), the
command pane, and figure windows that open to display graphs. The first two of these
differences have to do with the fact that Matlab is an interpreted language/programming
environment. You primary area of interaction with the Matlab interpreter will be through
the command window, with variable information panes providing views of variables and their
contents related to your interaction. It’s interesting to note that, if you want, you can run
Matlab without the GUI, providing just a command line interface.

Interpreted languages have their advantages and disadvantages. One advantage is that
anything you can use as a line of code in a program you can use immediately as a command
on the command line. This lets you test code interactively and then copy it into the script or
function you’re writing. Like any IDE, Matlab includes an editor with syntax highlighting
and debugger integration.

The disadvantage is the interpreted programs are slower. In Matlab, we get around this
by using built-in functions that operate on entire vectors or arrays as single data objects.
The core loops of the built-in functions are compiled for speed. If you make good use of
those functions, Matlab code can often be as fast as completely compiled code.

Here are some things to try:

1. Immediate calculations and variables:

radius = 5 % Comments start with "%"

circumference = 2 * pi * radius

area = pi * radius^2

2. Complex numbers:

Signal Computing Laboratory Manual

http://www.mathworks.com/help/matlab/index.html

0 THE MATLAB LAB, OR HOW TO NOT TEACH A PROGRAMMING LANGUAGE4
sqrt(−1)
x = 7 + 14j

conj(x) % complex conjugate

abs(x) % magnitude (e.g., for polar representation)

angle(x) % and angle for polar rep

real(x)

imag(x)

3. Complex exponentials:
exp(j * pi)

exp(j * pi/2)

exp(j * pi/4)

4. Vectors:
v1 = [0 1 2 3] % Four elements

v2 = [0 : 2 : 10] % like a loop (start value : increment : end value)

v3 = pi * [−0.5 −0.25 0 0.25 0.5] % All operations are vectorized

exp(j * v3)

mistake = v1 * v1 % a mistake; vector mult doesn't work this way

dotproduct = v1 * v1' % transposing will work, if you want to do this

arrayprod = v1 .* v1 % element−by−element ops include: .+, .−, .*, ./

5. Simple plots (note that “;” suppresses outputting results to the command window —
useful if that would generate massive amounts of text, or just if you want things neat):

t = [0 : 0.01 : 2*pi];

x = sin(t);

plot(t, x); % default plots points connected by lines in blue

plot(t, x, 'r'); % change the line color

plot(t, x, 'r.'); % change the plot style; zoom in to see individual points

xlabel('t, ms'); % X axis label (all of your plots should have this)

ylabel('Mag'); % Y axis label (all of your plots should have this)

title('Triangle');% Graph title (all of your plots should have this)

If you take a sequence of commands and save them in a file with an extension of .m, the
result is a script. Assuming that the script is saved in a directory in the MATLAB search
path, you can then execute the script by just typing its name (without the .m), just as if it
were a command. If you want your code to take parameters, return a return value, and have
local variables, start your code with a line like:
function retval = funcname(parm1, parm2)

Your code is now a function. MATLAB functions can take variable numbers of arguments
and even return variable numbers of return values, but that’s getting beyond what we need
right now.

Signal Computing Laboratory Manual

0 THE MATLAB LAB, OR HOW TO NOT TEACH A PROGRAMMING LANGUAGE5
Step 1.1 It’s easy to create, concatenate, extract, and modify vectors or parts of vectors.
Execute the following lines of Matlab code and explain what each echoes out:
a = ones(1,3)

b = zeros(1,5)

x = [b, a, [1:2:12]]

x(7:end)

length(x)

x(1:2:12)

Also, explain the difference between the square bracket notation [1:2:12] and the par-
enthetical notation (1:2:12).

Step 1.2 Consider the result of the following assignment:
x(7:11) = pi*(1:5)

Write a single statement that will replace the odd-indexed elements of x with the constant
-10 (i.e., x(1), x(3), etc).

Step 1.3 One of the side benefits of learning Matlab is that it trains you to think in terms
of parallel operations — an increasingly important skill in a profession becoming dominated
by multi-core, GPU, and distributed computing. That doesn’t mean you can’t write loops in
Matlab; it’s just that your code will be more concise and efficient if you can avoid that. The
efficiency arises from the fact that the vectorized Matlab commands are mostly compiled;
while the loops you write are interpreted. Consider the following loop:
for k=0:7,

x(k+1) = cos(k*pi/4);

end

x

Why is x indexed by k+1 rather than k? What happens to the length of x for each iteration
of the loop? Rewrite this computation without using the loop (as in list item 5). Besides the
increase in efficiency from avoiding an interpreted loop, what other major efficiency results
from this change?

Step 1.4 Consider the following code that plots a sinusoid:
t = [0 : 0.01 : 1]; % time in seconds

f = 5; % freq in Hertz

x = sin(2*pi*f*t);

plot(t, x);

xlabel('Time (sec)');

Use the MATLAB editor to create a script file called firstsin.m, verify that you’ve
saved it in a directory in the MATLAB path (or add that directory to the path), and test
its execution by typing firstsin at the MATLAB command prompt. Note that you can
also do:

Signal Computing Laboratory Manual

0 THE MATLAB LAB, OR HOW TO NOT TEACH A PROGRAMMING LANGUAGE6
type firstsin % prints out contents of the script

which firstsin % shows directory (useful when your code shadows built−ins)

If you included documentation for this script (comments at the beginning), the command
help firstsin would also produce useful output.

Add three lines of code to your script, so that it will plot a cosine using the same axes
as the sine (i.e., “on top of the sine”). Use the hold function to add a plot of

0.75*cos(2*pi*f*t)

to the plot. So, your final graph will have two functions plotted. Save the plot using the
MATLAB print command as a PNG file named step14.png by typing:

print −dpng step14

You should include all plots and code snippets in your lab report, following the instruc-
tions in the report rubric.

Step 1.5 You can also use Matlab to generate sounds. A pure tone is merely a sinusoid,
which you already know how to generate. Let’s generate one with a frequency of 3 kHz and
a duration of 1 second:

T = 1.0;

f = 3000;

fs = 8000;

t = [0 : (1/fs) : T];

x = sin(2*pi*f*t);

soundsc(x, fs)

The vector of numbers x are converted into a sound waveform at a certain rate, fs, called
the sampling rate (we will learn a lot more about this in this class). In this case, the sampling
rate was set to 8000 samples/second. What is the length of the vector x?

Step 1.6 Write a new function that performs the same task as the following function
without using any loops. Use the idea in step 1.3 and also consult the section on the find
function, relational operators, and vector logicals in the MATLAB documentation.

function B = denegify(A)

% DENEGIFY Replace negative elements of matrix with zeros

% Usage:

% B = denegify(A)

%

[W,H] = size(A);

for i=1:W

for j=1:H

if A(i,j) < 0

B(i,j) = 0;

else

B(i,j) = A(i,j);

Signal Computing Laboratory Manual

0 THE MATLAB LAB, OR HOW TO NOT TEACH A PROGRAMMING LANGUAGE7
end

end

end

0.2 Trigonometric Functions and Complex Mathematics in Matlab

Step 2.1 In this step, you are asked to complete a Matlab function to synthesize a waveform
in the form of:

x(t) =
N∑
k=1

ak cos(2πft+ φk)

This is a sum of cosines, all at the same frequency but with different phases and amplitudes.
Use the following function prototype to start you off:

function x = sumcos(f, phi, a, fs, dur)

% SUMCOS Synthesize a sum of cosine waves

% Usage:

% x = sumcos(f, phi, a, fs, dur)

% Returns sum of cosines at a single frequency f, sampling

% rate fs, and duration dur, each with a phase phi and

% amplitude a.

% f = frequency (scalar)

% phi = vector of phases

% a = vector of amplitudes

% fs = the sampling rate in Hz (scalar)

% dur = total time duration of signal (scalar)

Include your code in your writeup. Additionally, include a plot of x = sumcos(20, [0
pi/4 pi/2 3*pi/2], [1 2 3 4], 200, 0.25); versus time.

Hint: the MATLAB length function is useful in determining the number of elements in
a vector; the size function returns both dimensions of a vector or an array.

Step 2.2 Now, let’s see how complex exponentials can simplify things. Re-implement your
sumcos function using complex exponentials. Take advantage of the fact that multiplying
a complex sinusoid ej2πft by the complex amplitude aiejφ will shift its phase and change
its amplitude. Thus, you should be able to create a single complex sinusoid at the given
frequency f and then multiply it by different a * exp(j * phi) to get multiple phase shifted
cosines. Remember that we want a real value to plot; the cosine is the real part of a complex
sinusoid. Include your code in your writeup and provide a plot that demonstrates that this
function produces the same result as the original implementation.

Signal Computing Laboratory Manual

0 THE MATLAB LAB, OR HOW TO NOT TEACH A PROGRAMMING LANGUAGE8
Step 2.3 Generate four sinusoids with the following amplitudes and phases:

x1(t) = 6 cos(2π(10)t− 0.5π) (1)
x2(t) = 3 cos(2π(10)t+ 0.25π) (2)
x3(t) = 2 cos(2π(10)t− 0.3π) (3)
x4(t) = 8 cos(2π(10)t+ 0.9π) (4)

a. Make a single plot of all four signals together over a range of t that will generate
approximately 3 cycles. Make sure the plot includes negative time so that the phase
at t = 0 can be measured. In order to get a smooth plot make sure that your have at
least 20 samples per period of the wave. Include your plot in your writeup.

b. Verify that the phase of all four signals is correct at t = 0, and also verify that each
one has the correct maximum amplitude. Use subplot(3,2,i) to make a six-panel
subplot that puts all of these plots in the same figure, with space for two additional
plots at the bottom. Use the xlabel, ylabel, and title functions so that the reader
can figure out what the plots mean; reinforce this with your report’s figure caption.
(You should include the final figure, with all subplots, that results from finishing all of
the parts of this step.)

c. Create the sum sinusoid, x5(t) = x1(t) +x2(t) +x3(t) +x4(t). Plot x5(t) over the same
range of time as used in the last plot. Include this as the lower left panel in the plot
by using subplot(3,2,5).

d. Now do some complex arithmetic; create the complex amplitudes corresponding to the
sinusoids xi(t): zi = Aie

jφi , i = 1, 2, 3, 4, 5. Include a table in your report of the zi in
polar and rectangular form, showing Ai, φi, Re{zi}, and Im{zi}.

0.3 Representing Analog, Discrete, and Digital Signals

In our class, we will need to manipulate analog signals (real-valued signals that are functions
of continuous time), discrete signals (real-valued signals that are functions of discrete time),
and digital signals (discrete-valued signals that are functions of discrete time). No need
to worry about the details or these; that will become clear later. The trickiest part of
this is representing anything other than digital signals on a digital computer, because you
can’t. So, we’ll need to employ two key elements of software design: information hiding and
make-believe.

Information hiding is used in our implementation of analog signals. We make use of the
object-oriented programming aspects of Matlab to create an AnalogSignal class. If you look
up the documentation for AnalogSignal (using doc AnalogSignal), you’ll see something
like figure 01. The key operations on these analog signals are:

• Creating an analog signal (ex: a = AnalogSignal(’sawtooth’, 2.0, 1.0, 10.0)).

Signal Computing Laboratory Manual

0 THE MATLAB LAB, OR HOW TO NOT TEACH A PROGRAMMING LANGUAGE9

Figure 01: Example help screen for the AnalogSignal class. This example may be out-of-
date; use the Matlab doc AnalogSignal command to get current documentation.

• Scaling an analog signal (ex: b = a * 5)

• Adding two analog signals (ex: c = a + b)

• Subtracting two analog signals (ex: d = c - a)

• Plotting an analog signal (ex: plot(d))

• Sampling an analog signal (ex: x = d.samplehold(0.1))

You will get a lot more experience working with analog signals shortly in this class, so
for the time being just play with this a bit.

Signal Computing Laboratory Manual

1 LET’S GET PHYSICAL 10

1 Let’s Get Physical

In this lab, you will use Matlab to explore the effects of summing sinusoids. You will then
investigate how a physical signal can be considered to be composed of a sum of sinusoids
— its Fourier series. You will be using the Matlab AnalogSignal class and functions at
http://faculty.washington.edu/stiber/pubs/Signal-Computing/.

1.1 Beating

In this section, you will use the Matlab AnalogSignal class (described previously in lab 1
and its figure 01) to simulate an analog signal generator. The constructor takes the following
arguments:

% AnalogSignal(type, amplitude, frequency, dur)

% Where:

% type = 'sine', 'cosine', 'square', 'sawtooth', or 'triangle'

% amplitude = signal amplitude

% frequency = signal frequency

% dur = signal duration

Remember that, though an AnalogSignal is simulating an analog signal, in Matlab all
functions are sampled at discrete points in time. The crufty details of this are hidden away
in the class’s implementation. Remember also that you can always plot an AnalogSignal
to see what you have; include such figures in your report

Step 1.1 Verify that you can get a triangle wave. What is the code to generate and plot
a triangle wave ranging from -1 to 1 Volts with a frequency of 10Hz and a duration of 1
second?

Step 1.2 Next, verify that you can generate a sine wave of 1 second duration at a frequency
of 440Hz, ranging from -1 to +1. What is the Matlab code to do this? Use the AnalogSignal
soundscmethod to play this as a sound. This pitch corresponds to “standard A” on a musical
scale — A above middle C. Use the Matlab set(gca, ’XLim’, [Xmin, Xmax]) function
call to set the X axis limits so that the waveform is apparent (i.e., you’re not just plotting
a solid blob).

Step 1.3 Generate three sine waves of identical range and duration, but with frequencies
of 442, 444, and 448 Hz. Next, generate the three sums of 440Hz and each of these new
signals separately (so, 440Hz + 442Hz, 440Hz + 444Hz, and 440Hz + 448Hz) to generate
beating akin to tuning an instrument against the 440Hz standard. Play each sum signal; can
you hear the beating? Plot each sum signal for its full 1s duration. The beating “envelope”
should be obvious. What is the beat frequency in each case? How does the beat frequency
and amplitude relate to the textbook discussion of beating?

Signal Computing Laboratory Manual

http://faculty.washington.edu/stiber/pubs/Signal-Computing/

1 LET’S GET PHYSICAL 11
1.2 Fourier series representation of a physical signal

Step 2.1 Recall that any periodic signal can be represented as a sum of harmonic sinusoids.
The amplitudes of these harmonics is collectively known as the Fourier Series. It may at
first seem like sums of sinusoids would be poor approximations of real periodic signals, but
this is not the case. We can illustrate this using a triangle wave. The formula for synthesis
of a triangle wave with frequency ω0 is a sum of harmonically related sine waves (its Fourier
series):

x(t) =
∞∑
k=0

 8

π2

(−1)k

(2k + 1)2︸ ︷︷ ︸
amplitude

sin((2k + 1)ω0t)︸ ︷︷ ︸
(2k+1)th harmonic

In this case, in the analog domain, we are dealing with frequencies in Hz, and so ω0 = 2πf0.
Notice that the Fourier Series of the triangle wave only uses odd harmonics (i.e., the only
non-zero frequencies are (2k + 1)ω0 = ω0, 3ω0, 5ω0 · · ·). Also notice that the resulting wave
will have zero mean because there is no “DC” term (i.e., 2k + 1 6= 0 for any integer k).

Write a Matlab script that approximates a triangle wave by summing together the first 7
harmonics of its Fourier series; plot the resultant signal (i.e., use f0, 2f0, 3f0, · · · 7f0, where
f0 =10 Hz). How does this signal compare to the triangle wave computed directly in the
previous step?

Step 2.2 Another way to view a signal is in the frequency domain. For a signal expressed
in terms of its Fourier series, the frequency representation is merely the coefficients of the
harmonics. Write a Matlab function or script to compute and plot the spectrum of a triangle
wave. You may find the MATLAB function stem useful. Note that you are not being asked
to plot the triangle wave as a function of time; you should plot the amplitudes of the
component sinusoids as a function of those sinusoids’ frequencies (like the vertical lines in
textbook figure 1.12). Use your code to plot the spectrum of the triangle wave from the
previous step (first 7 harmonics).

Signal Computing Laboratory Manual

2 HELLO, DIGITAL! 12

2 Hello, Digital!

In this lab, you will investigate how capturing an analog signal for computer use — sampling
and quantization — modifies the signal, seeing how the choices you make in the parameters
for sampling and quantization affect the quality of the digitized, computer signal.

2.1 Sampling

The first step in digitization is sample and hold, in which the continuous analog signal is
converted to a discrete-time analog signal (an analog signal that only changes its value at
particular points in time). You will use the samplehold method to do this:

% samplehold Perform a sample and hold function on an AnalogSignal

% Usage:

% x = obj.samplehold(h)

% where obj = AnalogSignal

% h = hold time in sec (sampling interval)

% x = resultant sampled AnalogSignal

Step 1.1 Create an analog sine waveform ranging from -5 to 5V with a frequency of 200Hz
and a duration of 2 seconds. Produce a plot with X-axis limits set to make the waveform
visible (i.e., don’t just make a 2s plot that tries (and fails) to show 400 cycles of the sinusoid.

Step 1.2 Use the samplehold method to produce sampled versions of this signal at 300Hz,
500Hz, 1000Hz, and 2000Hz. Use the Matlab subplot command, and the discreteplot
function provided with this class’s Matlab code, to plot the original and all four sampled
signals together. One of the things that you will note from these plots is that the X axes of
these plots do not have units of continuous time; their units are not seconds. Instead, the X
axis values are sample count, starting with sample 1. You will want these plots to show their
signals over the same time duration, and so you’ll need to choose that duration, then figure
out, for each sampled signal, how many samples correspond to that duration, and then set
the X axis limits for each figure so that the plots show equal durations.

Clearly, the results are not the same, and none look identical to the original sine wave.
What are the two essential pieces of information about a sine wave that need to be preserved
when sampling it? Does it appear that all sampled versions are equally useful in achieving
this? Why or why not (in other words, your answer to this question should not be just “yes”
or “no”)?

Step 1.3 Let’s look at aliasing in a little more detail and with a lot more numerical
precision. You’ll recall from the text that, once we sample a signal, we have limited the
range of frequencies that we can represent in our discrete signal to the range 0 ≤ ω̂ ≤ π,
corresponding to a range of apparent frequencies in the physical world of 0 ≤ ω′ ≤ ωs/2
(or 0 ≤ f ′ ≤ fs/2). Any frequency in the original signal above fs/2 will be aliased into the

Signal Computing Laboratory Manual

2 HELLO, DIGITAL! 13
range of possible apparent frequencies. To keep things simple, we’ll stick with a sinusoid;
this time, make it 10Hz with an amplitude of -1 to +1 and a duration of 1s. This will make
it easy to count cycles when plotted. Set up a figure that can hold three plots and plot this
analog signal in the top plot.

Step 1.4 Sample this signal at 25Hz and use the discreteplot function to plot the sam-
pled signal in the middle. Sample it at 15Hz and similarly plot that sampled signal at the
bottom.

Step 1.5 Before examining the plots in detail, answer the following questions: For each
of the two sampling frequencies, what is the range of apparent frequencies that can be
represented? For each, will a sinusoid with f = 10Hz be aliased? If so, what will be the
digital frequency and the apparent frequency of a 10Hz sinusoid?

Step 1.6 Examine the plots and count the number of up-and-down cycles in each. Don’t
worry that each cycle doesn’t look the same, or that every other cycle seems different; just
count each. You should see 10 cycles in the top graph; how many do you see in the middle
and bottom? How does this compare to the theory you discussed in the previous step? If
there is any discrepancy, explain it.

2.2 Analog to Digital Conversion

The last step of digitization is called “analog to digital conversion,” or quantization. In this
step, the sampled analog signal is converted to a discrete signal, with values represented by
b bit integers. We will use the quant function provided with this class’s Matlab code to
perform this conversion:

% QUANT Quantize a sampled (discrete) signal using a prescribed

% number of bits per point.

% Usage:

% y = quant(x,nb,out)

% where y = digital signal quantized to 2^(nb) bits resolution

% x = vertical points of sampled signal

% nb = number of bits to use per point

% out = 'raw' means output binary values: 0,...,2^(nb−1)
% otherwise, set ouput value range = input value range

Step 2.1 Write a Matlab function that compares two signals by computing the signal to
noise ratio (SNR) that results from changing one into the other (by quantization). Your
function should do this by first computing root mean squared (RMS) error between the two.
In this case, you will be comparing a sampled signal with a quantized version of it. To do
this, you should subtract the quantized signal from the sampled signal to produce a vector
of differences (errors), then square each difference value using the MATLAB .^ operator (to

Signal Computing Laboratory Manual

2 HELLO, DIGITAL! 14
get squared errors), then take the mean of these squared values using the MATLAB mean
function (mean squared error — a scalar value), and finally take the square root of that
scalar result (root mean squared error). We can compute the RMS signal in a similar way,
by squaring the signal values, getting the mean of those squared values, and then taking the
square root. The final result should be a single value — the signal-to-noise ratio (SNR) in
decibels. What is in the numerator and what is in the denominator of this ratio? Note that
this is different than what we did in the textbook, because we are now doing the computation
for a specific signal, not just figuring SNR for a possible range of signal values.

Step 2.2 Use your code to compute the SNR for a quantized sinusoid. Generate an analog
signal with with a range of 0 to 5, frequency of 10Hz, and duration 2sec. Sample it at 25Hz.
Use 2, 4, 8, 12, and 16 bits quantization, and plot SNR on the Y-axis versus number of
quantization bits on the X-axis.

Step 2.3 Repeat Step 2.2 using a square waveform with the same parameters.

Step 2.4 Repeat Step 2.2 using a triangle waveform with the same parameters.

Step 2.5 As you double the number of bits used in quantization, how does the SNR change?
How does this compare to what your learned from the textbook? Refer to specific features
of your plots from Steps 2.2–2.4 to justify your answer.

Signal Computing Laboratory Manual

3 FEED IT FORWARD 15

3 Feed It Forward

This lab covers the basic concepts of filtering and feedforward filters. You may have also
heard of feedforward filters referred to as finite impulse response (FIR) filters. In this lab,
we will cover the basic idea of a filter, its mathematical representation (such as the defining
equation, frequency response, and transfer function), the relationship among filter coeffi-
cients, zero placement, and filter type (low pass, high pass, band reject), and some basic
properties of filters.

3.1 Overview of Filtering and Matlab

A digital filter is a signal processing operation that can be described equivalently by its
defining equation, transfer function, or frequency response. Each representation completely
defines the filter. It is advantageous to use each of the different representations depending
on whether you are implementing, analyzing, or designing an FIR filter:

y[n] =
M∑
k=0

bkx[n− k]︸ ︷︷ ︸
defining equation

Y = H(z)X

H(z) =
M∑
k=0

bkz
−k

︸ ︷︷ ︸
transfer function

Y = H(ω̂)X

H(ejω̂) = H(ω̂) =
M∑
k=0

bke
−jω̂k

︸ ︷︷ ︸
frequency response

In these equations, x[n] and y[n] are the nth samples from the input and output, respec-
tively, while X and Y represent the entire input and output signal (all of the samples in
the signal). A k-sample time delay of a signal is produced by multiplication by the delay
operator, z−1 = e−jω̂k. In all three cases (but most simply for the transfer function), we can
obtain insight into the filter’s operation from the coefficients, bk. We can do this by factoring
the transfer function polynomial: its roots are the zeros of the filter and they can be real
or complex. The placement of the zeros in the complex plane (most usefully expressed in
polar coordinates) will tell us which frequencies are suppressed and to what extent those
frequencies are suppressed (we can calculate each using the angle and magnitude of the zero,
respectively).

Matlab has a modest set of functions related to filtering (a much more substantial set of
tools comes along with the Matlab Signal Processing Toolbox, but we will confine ourselves

Signal Computing Laboratory Manual

3 FEED IT FORWARD 16
here to using core Matlab). The filter function applies a general digital filter to a signal.
For this lab, we will stick using this filter as follows:

a = [1]; % This will be relevant later for feedback filters

b = [b0 b1 b2]; % Coefficients (remember, Matlab indices start at 1)

y = filter(b, a, x); % x is input signal; y is output

This allows us to define the bk coefficients for a filter and provide them to the filter function
as a vector so that it can filter the input signal.

We’d also like to specify a feedforward filter by indicating its zero locations, which we
can do by using the poly function to compute the coefficients from a set of roots. So, for
example, if we want a feedforward filter with zeros at 0.9+0j and 0.75e±jπ/4, we can compute
the bk values as:

r = [(0.9 + 0.0*j) (0.75*exp(j*pi/4)) (0.75*exp(−j*pi/4))];
b = poly(r);

a = [1];

y = filter(b, a, x);

(Where the definition of r is written a bit more verbosely than it has to be.) Note that, from
the documentation for poly, the vector of coefficients it produces are ordered from highest
to lowest powers; this corresponds to the same order as the coefficients in the b vector, after
dividing by z−M , the highest delay term.

You can visualize the zero locations with the following code:

plot(complex(r), 'o')

rectangle('Position', [−1 −1 2 2], 'Curvature', [1 1])

line([−1 1], [0 0], 'Color', [0 0 0])

line([0 0], [−1 1], 'Color', [0 0 0])

axis equal

Here, we use the unfortunately named rectangle function to draw the unit circle and the
line function to draw the real and imaginary axes. Note also that we have to make sure
that the value of r that we pass to the plot() function is complex (since we want to plot it
on the complex plane) using the complex() function, because the roots of a polynomial can
be real.

Finally, you can compute and plot the magnitude of the filter’s frequency response pretty
directly in Matlab:

omegahat = [0: 0.01: pi]; % define the frequency axis

z = exp(j*omegahat); % define the complex frequency axis

H = polyval(b, z); % evaluate the transfer function polynomial

plot(omegahat, 20*log10(abs(H)/max(abs(H))));

xlabel('$\hat{\omega}$, radians','Interpreter', 'latex');

ylabel('$|\mathcal{H}(\hat{\omega})|$, dB','Interpreter', 'latex')

You’ll note that the code above plots the ratio of the magnitude of the frequency response
to the maximum value of that magnitude. This is done because it is convention to ignore

Signal Computing Laboratory Manual

3 FEED IT FORWARD 17
whether a filter amplifies a signal overall; what we are concerned with are the relative amounts
that different frequencies are passed or blocked.

Remember, we can define a specific filter using either of the methods above. Sometimes it
is easier to understand the filter using zeros and sometimes it is easier to use the coefficients
directly. Either method can be used to represent the same filter, and we can go back and
forth with the poly and roots functions (and back and forth between polar and rectangular
representations of complex numbers with the abs, angle, and exp functions).

3.1.1 From Filter Coefficients to Transfer Function and Frequency Response

Given the coefficients of an FIR filter we can solve for the zero locations and the frequency
response. For example the two-point averaging system is given by:

y[n] =
1

2
x[n] +

1

2
x[n− 1] (5)

we can find the transfer function by rewriting the filter using the delay operator, z:

Y =
1

2
X +

1

2
z−1X (6)

H(z) =
Y

X
=

1

2
(1 + z−1) (7)

If we’re interested in the zero location we can then multiply H(z) by z/z to obtain:

H(z) =
1
2
(z + 1)

z
(8)

The root of the numerator, z = −1 is the location of the only zero (the root(s) of the
denominator for an FIR filter are always at z = 0, and do not affect the frequency response).
We can also derive the frequency response from this by remembering that H(ejω̂) = H(ω̂)
or that z = ejω̂. From the zero location, z = −1, we can immediately tell that the frequency
response is zero at ejω̂ = −1 or ω̂ = π. With a zero at an angle of ω̂ = π, this is a low-pass
filter. As a warm-up, use Matlab and the coefficients of equation 5 to verify the expected
zero placement and frequency response.

3.1.2 From Zero Placement to Filter Coefficients

When we are given the zero placement, we can very easily determine the filter coefficients
because those zeros are the roots of a factored polynomial. For example, given two complex
conjugate zeros, z1 and z2 (i.e., the real parts are equal, Re[z1] = Re[z2] = Re[z1,2], and
the imaginary parts are negatives of one another Im[z1] = − Im[z2] or, equivalently in polar

Signal Computing Laboratory Manual

3 FEED IT FORWARD 18
coordinates, z1 = rejω̂0 and z2 = re−jω̂0), the transfer function is:

H(z) = (z − z1)(z − z2)/z2 (9)
= (z2 − (z1 + z2)z + z1z2)/z

2 (10)
= 1− 2 Re[z1,2]z

−1 + r2z−2 (11)
= 1− 2 Re[r(cos(ω0)± j sin(ω0))]z

−1 + r2z−2 (12)
= 1︸︷︷︸

b0

− 2r cos(ω0)︸ ︷︷ ︸
b1

z−1 + r2︸︷︷︸
b2

z−2 (13)

At this point, we can rewrite the transfer function as the filter’s generating equation, using
the delay operator z−k, y[n] = x[n]− 2r cos(ω0)x[n− 1] + r2x[n− 2]. This allows us to read
off the filter coefficients: b0 = 1, b1 = −2r cos(ω0), and b2 = r2.

3.2 Frequency Response and Pole-Zero Plots

Step 1.1 Consider a filter that computes a running average of three points of our input
signal (a three-point averager):

y[n] =
1

3

2∑
k=0

x[n− k] =
1

3
x[n] +

1

3
x[n− 1] +

1

3
x[n− 2] (14)

a. Draw a block diagram for this filter.

b. How many zeros will this filter have?

c. Find and sketch the zero locations using pencil and paper, then use Matlab to verify
this.

d. From the plot of zero locations, sketch the magnitude of the frequency response as
a function of ω̂ by hand and verify this using Matlab. How does the minimum of
the magnitude of the frequency response relate to the polar representation of the zero
locations? What kind of filter would you say this is?

Step 1.2 A first-difference filter is an approximation to a discrete derivative operation. Its
defining equation is:

y[n] = x[n]− x[n− 1] (15)

a. Draw a block diagram for this filter.

b. Derive the transfer function, H(z), for this filter. From this, determine the expression
for the frequency response, H(ω̂) = H(ejω̂).

c. From the transfer function, determine the filter’s zero locations and sketch them. Check
your results with Matlab.

Signal Computing Laboratory Manual

3 FEED IT FORWARD 19
d. From the zero plot, sketch the magnitude of the filter’s frequency response as a function

of ω̂. Use Matlab to check your results. What kind of filter would you say this is?

e. Use Matlab to compute this filter’s response to the following input. Generate an analog
signal that is a sinusoid with amplitude of 1, frequency of 2, and duration of 1. Sample
it at 32 samples/second and quantize it using 16 bits. What is the digital frequency,
ω̂, of this f = 2Hz sinusoid?

f. Produce a figure with two plots: the top should be the original digital signal, X, and
the bottom should be the filtered signal, Y .

g. Examine the plots of X and Y . Note that Y appears to be a scaled and shifted sinusoid
of the same frequency as X. The exception is the first point, y[0]. Explain why y[0] is
different (if you are unsure, consider the defining equation and the input values to it
for n = 0).

h. Estimate the frequency, amplitude, and phase of Y directly from its plot (ignoring
y[0]).

i. To compare these measurements to theory, use your expression for the filter’s fre-
quency response to calculate the amplitude and phase at the digital frequency ω̂ you
determined above. How do these compare to what you determined from the Matlab
plots?

Step 1.3 Just as we can compute a discrete first derivative with a first-difference filter, we
can compute a discrete second derivative with a second difference filter.

a. Use your expression for the transfer function of the first difference filter and your
knowledge that the combined transfer function of two filters cascaded, or connected in
series, is the product of their individual transfer functions to determine the transfer
function for a second-difference filter.

b. Draw a block diagram for this filter.

c. Determine the filter’s zero locations and sketch them. Check your results using Matlab.

d. From the zero plot, sketch the magnitude of the filter’s frequency response as a function
of ω̂. Use Matlab to check your results. What kind of filter would you say this is?

Step 1.4 Consider a feedforward filter with complex conjugate zeros at z1,2 = −0.5± j0.5.

a. Determine the filter coefficients.

b. Use Matlab to plot the frequency response of the filter.

c. What are the effects of the zeros on the frequency response? What kind of filter would
you call this?

Signal Computing Laboratory Manual

3 FEED IT FORWARD 20
3.3 Linearity and Cascading Filters

Step 2.1 A system is called linear if a sum of different inputs produces an output that is
the sum of the outputs for the inputs taken individually. Perform a simple test of the linearity
of the filter from step 1.2 by doubling the input amplitude in Matlab (X ′ = 2X = X +X).
How does the new output amplitude compare to the old one?

Step 2.2 In one of the self-test exercises in the textbook, two filters with transfer functions
H1(z) = b0 + b1z

−1 and H2(z) = b′0 + b′1z
−1 were connected in series, and it was shown that

they could be connected in either order to produce the same composite effect (the same
overall transfer function). Redo this exercise using the defining equations for the two filters,
i.e., y1[n] = F1(x[n]) for the filter with transfer function H1(z) and y2[n] = F2(x[n]) for the
filter with transfer function H2(z). In other words, show that F2(F1(x[n])) = F1(F2(x[n])).

Step 2.3 Use Matlab to implement a 50% duty cycle square wave with amplitude 1,
frequency 2Hz, and duration 1s. Sample and quantize it appropriately (to make your figures
look nicer, feel free to chose a sampling rate much higher than the minimum). Send the
resultant digital signal through the previously-defined three-point averager filter, and then
the output of that filter through the first difference filter. Plot the input and output. What
does the output of this combined filter look like?

Step 2.4 Now, switch the order you apply the filters so that the first difference filter is first
and the three-point averager is second. Plot the input and output. How does the output
of this configuration compare to that of the preceding step? Does this match what you
expected? Why or why not?

Signal Computing Laboratory Manual

4 LET’S CATCH SOME Z’S 21

4 Let’s Catch Some Z’s

This lab covers the z-transform, used to convert arbitrary digital signals to the frequency
domain. It also exercises the relationship between a filter’s transfer function and impulse
response and how the operations of multiplication and convolution, respectively, can be used
to compute a filter’s output.

4.1 The z-transform, Transfer Function, & Impulse Response

A discrete signal x[n] has a z-transform X(z) defined by the following equation:

X(z) =
∞∑
n=0

x[n]z−n

With this definition lets investigate a feed forward filter with ten coefficients, {b0, b1, · · · , b9}.
Recall that the Matlab filter function allows us to specify a filter in terms of its coefficients,
but we can also think of it as being defined in terms of its transfer function. Considering the
bk coefficients of the above feed forward filter, the filter function implements the transfer
function:

H(z) =
9∑

k=0

bkz
−k (16)

In previous labs we have computed the transfer function using the delays of the defining
function. Mathematically, we were actually taking the z-transform of the impulse response!
In this example, the impulse response is:

h[n] =
9∑

k=0

bkδ[n− k] (17)

where δ[k] is the unit impulse and only has a non-zero value at k = n. H(z) and h[n] form
a z-transform pair, h[n]

z←→ H(z). It should now be obvious why feedforward filters are also
known as finite impulse response filters — their impulse response only has a finite number
of values. To compute the output, y[n], using the impulse response we use convolution.
Namely, we convolve the input, x[n], by the impulse response, h[n],

y[n] = x[n] ∗ h[n] =
9∑

k=0

x[k]h[n− k] (18)

And, indeed, Matlab has a conv function to do this convolution. Alternatively, we can
compute a filter’s output by multiplying the transfer function by the z-transform of the
input to yield the z-transform of the output:

Y (z) = H(z)X(z) (19)

Signal Computing Laboratory Manual

4 LET’S CATCH SOME Z’S 22
From a practical point of view, of course, it makes more sense to implement a filter in terms
of its impulse response. However, for filters with long impulse responses, it is sometimes
more convenient to represent them mathematically using the transfer function (which we
now know is just the z-transform of the impulse response!).

4.2 Z-Transforms

Step 1.1 On paper, compute the z-transform, X(z), of

x[n] =

{
(−1)n n ≥ 0
0 n < 0

(20)

Note that this is an infinite geometric series. What are the locations of any pole(s) (roots of
the denominator polynomial) or zero(s) (roots of the numerator polynomial)?

Step 1.2 Evaluate the frequency response of X(z) from step 1.1, X(z)
∣∣
z=ejω̂

, by sketching
it by hand. What kind of filter is this?

Step 1.3 Consider the z-transform:

X(z) = 1− 2z−1 + 3z−3 − z−5 (21)

Write the inverse z-transform, x[n], as a table of values for corresponding n values.

4.3 Impulse Response

Step 2.1 Consider a filter with a transfer function

H(z) = 1 + 5z−1 − 3z−2 + 2.5z−3 + 4z−8 (22)

What is the defining equation for this filter, y[n] = F (x[n])?

Step 2.2 What is the output sequence of the filter of Step 2.1 when the input is x[n] = δ[n]?
Verify this using Matlab.

Step 2.3 The impulse response of a filter is h[n] = δ[n] + 2δ[n − 1] + δ[n − 2] − δ[n − 3],
or equivalently, h[n] = {1, 2, 1,−1}, n = {0, 1, 2, 3}. Determine the response of the system
to the input signal x[n] = {1, 2, 3, 1}, n = {0, 1, 2, 3} by hand. Use Matlab to check your
results. Include a figure that shows both the input and output signals; make sure the reader
can clearly see what the signal values are (the stem plot function should help to ensure this
is the case).

Step 2.4 Change the input to the filter of Step 2.3 to be δ[n]. What are the output values?
How do they compare to the impulse response? Include plots of the filter input and output
values in your report.

Signal Computing Laboratory Manual

4 LET’S CATCH SOME Z’S 23
Step 2.5 Use Matlab to determine the output of the filter {1/3,1/3,1/3}, n = {0, 1, 2} for
the input:

x[n] = 4 + sin[0.25π(n− 1)]− 3 sin[(2π/3)n] (23)

Include a listing of your Matlab code and a figure with plots of the filter input and output
in your report. Is the result expected? Why or why not?

Step 2.6 Create your own Matlab function, convolution, to implement a convolution
function. To test your function, make sure it works exactly like the Matlab conv and filter
functions by providing the same input to each and subtracting their outputs. Use the filter
{1/3, 1/3, 1/3}, n = {0, 1, 2} from step 2.5.

4.4 Canceling Sinusoidal Components

Filters can be designed to cancel sinusoids. Implement a filter in Matlab with the following
impulse response:

h[n] = δ[n]− 2 cos(π/4)δ[n− 1] + δ[n− 2] (24)

Step 3.1 Plot the frequency response for this filter. What are the zero locations?

Step 3.2 Use as an input to this filter the signal x[n] = sin ω̂n, using the two frequencies
ω̂ = π/2 and ω̂ = π/4. You will need to choose appropriate analog signals, with convenient
frequencies and durations, and then sample them appropriately so they have the correct
digital frequencies. Make sure to verify that you get the correct digital frequencies and that
plots you make are convenient for the reader (for example, neither too many nor too few
cycles)! Compute the filter in Matlab for each of these two inputs, plotting the input and
output of each. When do you get cancellation?

Step 3.3 Can you modify the filter coefficients to cancel the other sinusoid? If so, show
your work.

Signal Computing Laboratory Manual

5 TO INFINITY AND RESPONSE! 24

5 To Infinity and Response!

By the end of this lab you should feel comfortable manipulating and using feedback filters
for simple problems. You should also be comfortable with the concept of a filter with an
infinite impulse response. All feedback filters have an infinite impulse response and are also
known as IIR filters. Feedback filters use the previous outputs of the filter, feeding them
back to compute the output for the current sample. The “fed back” outputs are weighted by
coefficients, a`.

5.1 A Note About Matlab Filter Coefficients

Note that the Matlab filter function uses negative values for the a` (feedback) coefficients,
from the transfer function. In other words, in the text, a second-order feedback filter’s
defining equation might be:

y[n] = a1y[n− 1] + a2y[n− 2] + b0x[n] (25)
y[n]− a1y[n− 1]− a2y[n− 2] = b0x[n] (26)

This yields the transfer function:

Y (z)(1− a1z−1 − a2z−2) = b0X(z) (27)

Y (z)/X(z) =
b0

1− a1z−1 − a2z−2
(28)

H(z) =
b0

1− a1z−1 − a2z−2
(29)

The coefficients used by filter, rather than being the a` from the defining equation (25)
are the negative a` from the transfer function (29) — the ratio of two polynomials. In other
words, to properly compute the above filter in Matlab, you will need to use:
a = [1.0 −a1 −a2];
b = [b0];

y = filter(b, a, x);

Note also that in this example the filter includes the a[0] coefficient (of course, per Mat-
lab one-based indices, as a(1)), which we will always leave as 1.0 (it’s the first “1” in the
denominator of the transfer function).

And finally, note that one form of the filter function takes a fourth argument, which
is the initial conditions for the feedback delays (used in computing the output values that
have delay terms which come before the first value in the x vector). These default to all zero
if not specified.

5.2 Feedback Filters as Recurrence Relations

You may notice that the defining equation for a feedback filter is in the form of a recurrence
relation. In fact, we can use a feedback filter to implement a recurrence relation if we set

Signal Computing Laboratory Manual

5 TO INFINITY AND RESPONSE! 25
the input to be an impulse, x[n] = Cδ[n], with amplitude C being the initial value for the
iteration. Let’s start out with the Fibonacci sequence, which you’ll remember to be:

F [n] =

{
1 n < 2
F [n− 1] + F [n− 2] n ≥ 2

(30)

We can rewrite this recurrence relation as:

y[n] = y[n− 1] + y[n− 2] + x[n] (31)

and we will get the Fibonacci sequence if we input an impulse (hence, the appearance of
the x[n] on the right hand side, which serves only to initialize the filter). In Matlab, this
can be done trivially by taking a vector of all zeros — let’s call this vector x — and setting
its first value only (x(1)) to C. This is also a very good demonstration of the first “I” in the
acronym “IIR”: the impulse response of this filter has infinite duration.

Step 1.1 If we set x[n] = δ[n] in (31), we should see that the impulse response of this filter
is indeed the Fibonacci sequence. Implement this filter in Matlab and verify that its impulse
response is the Fibonacci sequence. What are the values of the coefficients that you used?

Step 1.2 What is the value for n = 19 (y(20) in Matlab)?

Step 1.3 Is this filter stable?

Step 1.4 Let’s do something similar with the recurrence relation for computing the series
y[n] = 1/3n in the text (as always, remember that Matlab indices start at 1). Set the
coefficients for a feedback filter to implement equation (5-43) in the text, y[n] = 1/3y[n −
1] + x[n]. What are the filter coefficients?

Step 1.5 What are the pole location(s) for this filter?

Step 1.6 Now use Matlab to calculate the impulse repsonse. Set the amplitude of the
input impulse to be 0.99996. Is this filter stable? Is its impulse response consistent with the
result of iterating equation (5-42) in the notes?

5.3 Telephone Touch Tone Dialing

Telephone touch pads generate dual tone multi frequency (DTMF) signals to dial a telephone.
When any key is pressed, the tones of the corresponding column and row in the table below
are generated, hence it is a “dual tone” code. As an example, pressing the 5 button generates
the tones 770Hz and 1336Hz summed together.

Signal Computing Laboratory Manual

5 TO INFINITY AND RESPONSE! 26
1209Hz 1336Hz 1477Hz

697Hz 1 2 3
770Hz 4 5 6
852Hz 7 8 9
941Hz ∗ 0 #

The frequencies in the table above were chosen to avoid harmonics. No frequency is a
multiple of another, the difference between any two frequencies does not equal any of the
frequencies, and the sum of any two frequencies does not equal any of the frequencies.1 This
makes it easier to detect exactly which tones are present in the dial signal in the presence of
line distortions.

It is possible to decode such a signal by first using a filter bank composed of seven
bandpass filters, one for each of the frequencies above. When a button is pressed, it will
produce a combination of two tones, and thus, at the decoder end, two of the bandpass
filters will produce significantly higher outputs than the others. A good measure of the
output levels is the average power at the filter outputs. This is calculated by squaring the
filter outputs and averaging over a short time interval.

Step 2.1 First of all, please write a Matlab DTMFCoder function. This function should take
in one argument — a telephone key number — and return a digital waveform containing
the appropriate summed tones. Internally, it should do this by generating AnalogSignals,
summing them, and then sampling them at 8kHz and quantizing them at 16 bits. DTMF
signal duration should be 1s. For each of the seven tone frequencies in Hz, what is the
corresponding digital frequency in the range [0, π]?

Step 2.2 In this step, please construct a bandpass filter for the 697Hz tone. Use a feedback
filter with complex conjugate poles. Locate these complex conjugate poles at the correct
location for ±697Hz. Use equation (5-38) of section 5.1.4 of the text to set the radius of
those poles so that the closest other tone frequency, 770Hz, lies outside the passband (in
other words, to set the bandwidth so that it is significantly smaller than twice the difference
between 697Hz and 770Hz). What were your pole locations?

Compute the corresponding filter coefficients. You can verify your filter performance by
plotting its frequency response.

Verify that the filter output for DTMFCoder output for keys 1, 2, and 3 are pretty much
identical, and that all other buttons produce much lower amplitude output. In your report,
include a plot of the filter output for one of the buttons 1, 2, or 3 and a plot for one of the
buttons 4, 5, or 6.

Step 2.3 Now we are ready to decide whether a particular frequency is present. Write a
Matlab RMS function that takes a vector as input and returns a scalar root mean squared
value for it — this function should square each value of the vector, take the mean of those

1More information can be found at: http://en.wikipedia.org/wiki/DTMF

Signal Computing Laboratory Manual

http://en.wikipedia.org/wiki/DTMF

5 TO INFINITY AND RESPONSE! 27
squares, and then take the square root of that mean. Determine the RMS filter output for
telephone buttons 1, 2, and 3 and compare them to the other phone buttons. You should
see a much higher value for 1, 2, and 3 than the other buttons; additionally, the RMS values
for those three buttons should be almost identical. What are the RMS values you get for
pressing 1 versus 4?

Step 2.4 Now we will assemble a filter bank. Implement filters in Matlab for each of the
six other DTMF frequencies and verify that they work as expected. Now, write a Matlab
function DTMFDecoder that takes a single input — a vector (for which you will use the
DTMFCoder output). DTMFDecoder should compute the RMS value of the output of each of
the seven filters in the filter bank. It should output (to the Matlab console) these RMS
values, and then detect the two highest values. It should use a lookup table or equivalent
logic to decode which button was “pressed,” and output (to the Matlab console) that button.

Signal Computing Laboratory Manual

6 JOE FOURIER WAS NOT A DISCRETE FELLOW 28

6 Joe Fourier Was Not a Discrete Fellow

6.1 Lab Background

By the end of this lab you should have a firm understanding of how the Discrete Fourier
Transform (DFT) can be implemented exactly using the Fast Fourier Transform (FFT). In
addition you should be able to identify common problems using the DFT to analyze signals.
You will also be familiar with a new tool, the spectrogram, that uses the DFT as a function
of time.

6.2 Implementing the DFT

Recall that the DFT can be implemented directly from the analysis equation. For a length
N signal x[n],

X[k] =
N−1∑
n=0

x[n]e−j
2π
N
nk for k = 0, 1, 2, · · ·N − 1 (32)

The order of the implementation is O(N) = N2. The following Java code outlines imple-
mentation of a 256-point DFT. It is written without any algorithmic speedup (i.e., it exactly
mirrors equation 32).

public class MyDFT

{

// x is the input and y is the magnitude of the complex DFT

public void computeDFT(double[] x, double[] y)

{

double[] yImag = new double[256];

double[] yReal = new double[256];

double twoPiOverN = 2*Math.PI/256;

for (int k = 0 ; k < 256 ; k++)

{

yReal[k] = 0;

yImag[k] = 0;

for (int n = 0 ; n < 256 ; n++)

{

yReal[k] += x[n]*Math.cos(n*k*twoPiOverN);

yImag[k] += −x[n]*Math.sin(n*k*twoPiOverN);
}

y[k] = Math.sqrt(yReal[k]*yReal[k] + yImag[k]*yImag[k]);

}

}

}

Signal Computing Laboratory Manual

6 JOE FOURIER WAS NOT A DISCRETE FELLOW 29
Note that, unlike in Matlab, there is no native support in Java for complex numbers

so this arithmetic is written out explicitly in the code above. For example, the equation
y = x× ea (where x is a real number) must be explicitly written out using Euler’s formula,
and the real and imaginary portions saved in separate variables, yreal = x × cos(a) and
yimag = x× sin(a).

The FFT algorithm can be used to reduce the computation time of the DFT to O(N) =
N log2N — a significant speedup for even modest length signals.

6.3 The FFT in Matlab

Matlab includes a fft function (there are many more related operations in the Signal Pro-
cessing Toolbox, but we are sticking to “vanilla” Matlab here). You can look at the docu-
mentation for this function; pay especial attention to the frequency values that correspond
to each element of the vector that this function returns, and to how to specify the number
of points in the FFT it computes.

Step 1.1 Implement your own myFFT function in Matlab that takes a real-valued vector as
input, computes a 256-point FFT, and returns a real-valued vector that is the magnitude of
the (single-sided, i.e., only positive frequencies) FFT. Implement this function using loops
(i.e., do not use recursion). The first part of this code performs a bit reversal on the input
array. You can use the following code to perform the bit reversal efficiently (efficient bit
reversal algorithms in other languages are typically more complex):

% Assume that you want to do a bit reversal of the contents of the vector x

indices = [0 : length(x)−1]; % binary indices need to start at zero

revIndices = bin2dec(fliplr(dec2bin(indices, 8))); % bit reversed indices

revX = x(revIndices+1); % Add 1 to get Matlab indices

This code converts the vector of in-order indices to an array of 8-character strings (repre-
senting those indices as binary 8-bit numbers). Each string is then reversed, and converted
back to numbers. The resultant vector of indices (which is what they are after we add one
to each) is applied to the signal to pull its entries out into a new vector, with the order of
the entries in bit-reversed order.

Once you’ve done this, all you need to do is iterate over the array log2N times! Remember
that you’re performing complex arithmetic and to compute the magnitude of the output array
once the FFT is computed. Include a copy of your Matlab code in your report.

Step 1.2 Check your results using the Matlab fft function. Your results should be quite
similar, if not identical; this should be apparent by comparing graphs of the outputs. Take the
FFT of a sinusoid with a frequency of π/4 radians per second using your FFT implementation
and the fft function.

Step 1.3 Prove that the number of complex multiplies performed by your code isO(N logN).

Signal Computing Laboratory Manual

6 JOE FOURIER WAS NOT A DISCRETE FELLOW 30
6.4 Using the DFT

Step 2.1 Create a sum of two sinusoids. Use the built-in Matlab fft function (it will allow
you, among other things, to apply an n-point FFT to a signal with more than n samples) to
compute the FFT of the sum and then plot the FFT magnitude. Use frequencies of 0.13π
and 0.19π for the two sinusoids. Make sure that there are at least 256 samples in each
waveform, as you’ll want to use a 256-point FFT! Also, make sure you correctly compute
the corresponding frequency values (either from 0 to π or −π to π, depending on whether
you prefer plotting the single-sided magnitudes or not) for the FFT X-axis, and label it
appropriate in your graph. What does the result look like? Does this make sense?

Step 2.2 At what index (or indices) does the FFT magnitude reach its peak value(s)?
What frequency (or frequencies) does this correspond to?

Step 2.3 Change the frequencies of the sinusoids to 0.13π and 0.14π. Repeat steps 2.1
and 2.2. Do the results still make sense?

Step 2.4 Replace the sum of two sinusoids with your DTMFCoder function from lab 6. Input
a selection of button values. Do the FFT function and plot show the separate frequencies
for each button?

6.5 Spectrograms

Comparing FFT graphs (as in the step 2.4 above) can be difficult to do. But what if we
could analyze the frequency content of a signal as a function of time? That would make it
easier to see differences in frequency if a signal started changing (like a string of DTMF keys
pressed in turn). To do this we will need a new tool called the Spectrogram. The spectrogram
is simply an algorithm for computing the FFT of a signal at different times and plotting
them as a function of time. The spectrogram is computed in the following way:

1. A given signal is “windowed.” This means that we only take a certain number of points
from the signal (for this example assume we are using a window of length 128 points).
To start out, we take the first 128 points of the signal (points 1 through 128 of the
input vector).

2. Take the FFT of the window and save the it in a separate array.

3. Advance the window in time by a certain number of points. For instance we can
advance the window by 64 points so that we now have a window of indices 65 through
192 from the input signal array.

4. Repeat steps 1–3, saving the FFT of each window, until there are no longer any points
in the input array.

Signal Computing Laboratory Manual

6 JOE FOURIER WAS NOT A DISCRETE FELLOW 31
5. Form a 2-D matrix whose columns are the FFT magnitudes of each window (placed

in chronological order). In this way, each row represents a certain frequency, each
column represents a given instant in time, and the value of the matrix represents the
magnitude of the FFT.

The result is called a spectrogram and is usually displayed as an RGB image where
blue represents small FFT magnitudes and red represents larger FFT magnitudes (the Jet
colormap if you are familiar with color visualizations). There is an art to choosing the correct
parameters of the spectrogram (i.e., window size, FFT size, how many points to advance
the FFT, etc.). Each parameter has tradeoffs for the time and frequency resolution of the
resulting spectrogram. For our purposes here, we will not be concerned with these tradeoffs.
Instead we will be more interested in getting familiar with analysis using spectrograms.

The Matlab Signal Processing Toolbox has a spectrogram function, but you can re-
trieve a drop-in replacement for it from http://www.ee.columbia.edu/ln/rosa/matlab/
sgram/ that will work without that toolbox. See the online Matlab documentation for the
spectrogram function to understand what the parameters to that function are (though, for
our purposes, you should just be able to use the call y = myspecgram(x).

Step 3.1 Use your DTMFCoder function again. Instead of computing its FFT, compute
its spectrogram instead. What does the spectrogram look like for button 1? Are both
frequencies present?

Step 3.2 For this step, use DTMFCoder to generate the codes for multiple buttons — at
least three — and concatenate them together to form a single vector. Does the spectrogram
make it easier to judge the frequency content of the keys? Can you clearly see when the
signal changes from one key to another?

Signal Computing Laboratory Manual

http://www.ee.columbia.edu/ln/rosa/matlab/sgram/
http://www.ee.columbia.edu/ln/rosa/matlab/sgram/

7 I’M SO COMPRESSED 32

7 I’m So Compressed

7.1 Sound and images in MATLAB

MATLAB has a number of functions that can be used to read and write sound and image
files as well as manipulate and display them. See the help for each function for details. Ones
that you’ll likely find useful are:

audiorecorder Perform real-time audio capture. This may or may not work on your system;
it is critically dependent on your hardware and MATLAB’s support thereof. You may
find it simpler to record and edit audio files with other software and then save it to a
file later read into Matlab; this might give you greater control over the recording.

audioinfo Get information about an audio file, including number of channels, how com-
pressed, sampling rate, bits per sample, etc.

audioread Read part or all of an audio file, returning sampled data and sampling rate.

audiowrite Write an audio file; the format is indicated by the filename provided. All
platforms support wav, .ogg, and .flac; Windows and OS X support .m4a and .mp4,
too.

sound Play vector as a sound. This allows you to create arbitrary waveforms mathemati-
cally (e.g., individual sinusoids, sums of sinusoids) and then play them through your
speakers. This is the function to use if you’re values are scaled within the range of -1
to +1.

soundsc This function works like sound, but first it scales the vector values to fall within
the range of -1 to +1. Much of the time, you won’t have your waveforms pre-scaled,
and you’ll use this function.

imfinfo Provides information about an image file, including dimensions, bit depth, etc.

imread Read image from graphics file. This function (and imwrite) supports many file
types.

imwrite Write image to graphics file.

image Display image. The image is displayed within normal Matlab axes, which you can
label or otherwise modify as usual. Any 2D array can be displayed as an image (for
example, this is what’s done with the output of myspecgram). You can alter the
colormap used for this display, if you like. There are other functions that plot 2D data
as wire meshes and surfaces.

imagesc Like image, but scales the image values first so that they span the full range of
the current colormap.

Signal Computing Laboratory Manual

7 I’M SO COMPRESSED 33
There are a number of other functions available; read the Matlab documentation to get the
full scoop on what is available and how it works.

Within MATLAB, audio is a 1-D vector (stereo is n× 2, but we won’t deal with stereo)
and gray-scale images are 2D arrays (color images are 3-D arrays). For simplicity’s sake,
make sure any sound files you use are mono.

7.1.1 Data Types

MATLAB supports a number of data types, and the type that the file I/O functions return
often depends on the kind of file read. Regardless, almost all of the MATLAB functions
you’ll use to process data return doubles. For example, consider the following commands
that read a color image, convert it to gray-scale, and display it:

>> A = imread('/tmp/ariel.jpg');

>> B = mean(A,3);

>> imagesc(B)

>> colormap(gray)

>> axis equal

>> whos

Name Size Bytes Class

A 100x55x3 16500 uint8 array

B 100x55 44000 double array

The (color) image is read into A, which, as you can see from the output of the whos command,
is a 100x55x3 unsigned, 8-bit integer array (the third dimension for the red, green, and blue
image color components). I convert the image to gray-scale by taking the mean of the
three colors at each pixel (the overall brightness), producing a B array that is double. The
imagesc function displays the image, the colormap function determines how the array values
translate into screen colors, and the axis equal command ensures that the pixels will be
square on the screen.

Much of the time, we will just perform our calculations using double data types. However,
we can use functions like uint8 to convert our data.

At the very least, you can get real audio files from http://faculty.washington.edu/
stiber/pubs/Signal-Computing/; I assume that you’ll have no trouble locating interesting
images (please keep your work G-rated). Don’t use ones that are too big, to avoid issues
with Canvas uploads of large lab report files.

7.2 Lossless image coding

The simplest way to compress images is run-length coding (RLE), a form of repetitive
sequence compression in which multiple pixels with the same values are converted into
a count and a value. To implement this, we need to reserve a special image value —
one that will never be used as a pixel value — as a flag to indicate that the next two
numbers are a (count, value) pair, rather than just a couple pixels. Let’s apply RLE to

Signal Computing Laboratory Manual

http://faculty.washington.edu/stiber/pubs/Signal-Computing/
http://faculty.washington.edu/stiber/pubs/Signal-Computing/

7 I’M SO COMPRESSED 34
three different kinds of images: color photographs, color drawings, and black-and-white im-
ages (e.g., a scan of text). You can choose images you like, or get these from the book
web site: http://faculty.washington.edu/stiber/pubs/Signal-Computing/ariel.jpg
(color photo), http://faculty.washington.edu/stiber/pubs/Signal-Computing/cartoon.
png (color drawing), and http://faculty.washington.edu/stiber/pubs/Signal-Computing/
text.png (black-and-white).

Step 1.1 Write a MATLAB script to read an image in, convert it to gray-scale if the image
array is 3-D, and scale the image values so they are in the range [1, 255] (note the absence of
zero). Verify that this has worked by using the min and max functions. Convert the results
to uint8 and display each using imagesc.

Step 1.2 At this point, you should have in each case a 2-D array with values in the range
[1, 255] inclusive. To simplify matters, we will treat each array as though it were one-
dimensional. This is easy in MATLAB, as we can index a 2-D array with a single index
ranging from 1 to N ×M (the array size). Write a RLE function that takes in a 2-D array
and scans it for runs of pixels with the same value, producing a RLE vector on its output.
When fewer than four pixels in a row have the same value, they should just appear in the
vector. When four or more (up to 255) pixels in a row have the same value, they should be
replaced with three vector elements: a zero (indicating that the next two elements are a run
code, rather than ordinary pixel values), a count (should contain 4 to 255), and the pixel
value for the run. Verify that your RLE function works by implementing a RLD function
(RLE decoder) that takes in a RLE vector, N , and M and outputs a 2-D N ×M array.
The RLD output should be identical to the RLE input (subtracting them should produce an
array of zeros); verify that this is the case. For each image type, compute the compression
factor by dividing the number of elements in the RLE vector by the number of elements in
the original array. What compression factors do you get for each image?

7.3 Lossy audio coding: DPCM

In differential pulse-code modulation (DPCM), we encode the differences between signal
samples in a limited number of bits. In this section, you’ll take an audio signal, apply
DPCM with differing numbers of bits, see how much space is saved, and hear if and how the
sound is modified. A slight complicating factor is that all of the data will be represented
using double, however, we will limit the values that are stored in each double to integers in
the range [0, 2bits − 1] (where “bits” is the number of bits we’re using).

Step 2.1 Find a sound to work with; you can use http://faculty.washington.edu/
stiber/pubs/Signal-Computing/amoriole2.mat if you like. Likely, it will have values
that are not integers; convert the values to 16-bit integer values by scaling (to [0, 216 − 1])
and rounding (reminder: the vector’s type will still be double; we’re just changing the values

Signal Computing Laboratory Manual

http://faculty.washington.edu/stiber/pubs/Signal-Computing/ariel.jpg
http://faculty.washington.edu/stiber/pubs/Signal-Computing/cartoon.png
http://faculty.washington.edu/stiber/pubs/Signal-Computing/cartoon.png
http://faculty.washington.edu/stiber/pubs/Signal-Computing/text.png
http://faculty.washington.edu/stiber/pubs/Signal-Computing/text.png
http://faculty.washington.edu/stiber/pubs/Signal-Computing/amoriole2.mat
http://faculty.washington.edu/stiber/pubs/Signal-Computing/amoriole2.mat

7 I’M SO COMPRESSED 35
in each element to be integers in that range). Verify that this conversion produces no audible
change in the sound. What is the MATLAB code to do this initial quantization?

Step 2.2 Now write a DPCM function, DPCM, that takes the sound vector and the number
of bits for each difference and outputs a DPCM-coded vector. Note that the MATLAB diff
function will compute the differences between sequential elements of a vector. Your DPCM
function should:

1. compute the differences between the samples,

2. limit each difference value to be in the range [−2bits−1 − 1, 2bits−1 − 1], producing
a quantized vector and a vector of “residues” (you will generate two vectors). For
each quantized difference, the “residues” vector will be zero if the difference, ∆xi, is
within the above range. Otherwise, it will contain the amount that ∆xi exceeds that
range (i.e., the difference between ∆xi and its quantized value, either −2bits−1 − 1 or
2bits−1 − 1).

3. “make up for” each nonzero value in the “residues” vector. For each such value, scan
the quantized difference vector from that index onward, and modify its entries, up to
the quantization limits above, until all of the residue has been “used up”.

4. The final result is a single coded vector that your function should return.

For example, let’s say that we’re using 4 bit DPCM and that some sequence of differences
is (∆x1 = 10,∆x2 = 5,∆x3 = −3). The range of quantized differences is [−7,+7], and so
the quantized differences are (7, 5,−3) and the residues are (3, 0, 0). Since the first residue
is nonzero, we proceed to modify quantized differences starting with the second one, until
we’ve added three to them. The resulting final quantized differences are (7, 7,−2).

Step 2.3 Implement an inverse DPCM function IDPCM that takes the first value from the
original sound vector and the DPCM vector and returns a decoded sound vector. There’s
no way for us to know where the losses in the encoding occurred, so we just use the DPCM
values as differences. Note that the MATLAB cumsum function computes a vector with
elements being the cumulative sum of the elements of its input vector, and that you can add
a constant to all of the elements of a vector using the normal addition operator.

Step 2.4 Test your DPCM and IDPCM functions by coding your sound using 15, 14, 12,
and 10 bit differences. At what point does the coding process produce noticeable degrada-
tion? To investigate further, see how few bits you can use to encode the sound and still
detect some aspect of the original sound. Is this surprising to you?

Signal Computing Laboratory Manual

7 I’M SO COMPRESSED 36
7.4 Lossy image coding: JPEG

Step 3.1 In this sequence of steps, we will use frequency-dependent quantization, similar
to that used in JPEG, to compress an image. Start with your gray-scale, continuous-tone
image from step 1.1 (if you used a color image, convert it to gray-scale as you did in step 1.1).
The MATLAB image processing or signal processing toolboxes are needed to have access to
DCT functions, so we’ll use the fft2() and ifft2() functions instead. To do a basic test of
these functions, write a script that loads your image, converting it to gray-scale if necessary,
and then computes its 2D FFT using fft2(). The resulting matrix has complex values,
which we will need to preserve. Display the magnitude of the FFT (remember to use the
abs function to get the magnitude of a complex number) using imagesc(). Do this for each
image type. Can you relate any features in the FFT to characteristics in the original image?

Step 3.2 Use ifft2() to convert the FFT back and plot the result versus the original
gray-scale image (use imagesc()) to check that everything is working fine. Analyze the
difference between the two images (i.e., actually subtract them) to satisfy yourself that any
changes are merely small errors attributable to finite machine precision). Repeat this process
for the other images.

Step 3.3 Let’s quantize the image’s spectral content. First, find the number of zero ele-
ments in the FFT, using something like origZero=length(find(abs(origX)==0));, where
origX is the FFT. Remember to exclude the DC value in the fft2 output in figuring out
this range. Then, zero out additional frequency components by zeroing out all with mag-
nitudes below some threshold. You’ll want to set the threshold somewhere between the
min and max magnitudes of origX, which you can get as mn=min(min(abs(origX))); and
mx=max(max(abs(origX)));. Let’s make four tests, with thresholds 5%, 10%, 20%, and
50% of the way between the min and max, i.e., th=0.05*(mx-mn)+mn;. Zero out all FFT
values below the threshold using something like:

compX = origX;

compX(abs(origX)<th) = 0; % Uses logical array indexing

You can count the number of elements thresholded by finding the number of zero elements
in compX at this point and subtracting the number that were originally zero (i.e., origZero).
This is an estimate of the amount the image could be compressed with an entropy coder.
Express the number of thresholded elements as a fraction of the total number of pixels in
the original image and make a table or plot of this value versus threshold level.

Optional. Note that the FFT may have very high values for just a few elements, and low
values for others. You might plot a histogram to verify this. Not including the DC value
likely will eliminate the highest value in the FFT. However, some of the other values may
still be large enough to produce too large of a range. Can you suggest an approach that will
take this into account? How does the JPEG algorithm deal with or avoid this problem?

Signal Computing Laboratory Manual

7 I’M SO COMPRESSED 37
Step 3.4 Now we will see the effect of this thresholding on image qual-
ity. Convert the thresholded FFT back to an image using something like
reconstructed = abs(ifft2(compX));. For each type of image and each threshold value,
plot the original image and the final processed image. Compute the mean squared error
(MSE) between the original and reconstructed image (mean squared error for matrices can
be computed as mean(mean((original-reconstructed).^2))). What can you say about
the effects on the image and MSE? Collect your code together as a script to automate the
thresholding and reconstruction, so you can easily compute MSE for a number of thresholds.
Plot MSE vs. threshold percentage (just as you plotted fraction of pixels thresholded vs.
threshold in step 3.3).

Signal Computing Laboratory Manual

	The Matlab Lab, or How to Not Teach a Programming Language
	Matlab in a (Very Small) Nutshell
	Trigonometric Functions and Complex Mathematics in Matlab
	Representing Analog, Discrete, and Digital Signals

	Let's Get Physical
	Beating
	Fourier series representation of a physical signal

	Hello, Digital!
	Sampling
	Analog to Digital Conversion

	Feed It Forward
	Overview of Filtering and Matlab
	From Filter Coefficients to Transfer Function and Frequency Response
	From Zero Placement to Filter Coefficients

	Frequency Response and Pole-Zero Plots
	Linearity and Cascading Filters

	Let's Catch Some Z's
	The z-transform, Transfer Function, & Impulse Response
	Z-Transforms
	Impulse Response
	Canceling Sinusoidal Components

	To Infinity and Response!
	A Note About Matlab Filter Coefficients
	Feedback Filters as Recurrence Relations
	Telephone Touch Tone Dialing

	Joe Fourier Was Not a Discrete Fellow
	Lab Background
	Implementing the DFT
	The FFT in Matlab
	Using the DFT
	Spectrograms

	I'm So Compressed
	Sound and images in MATLAB
	Data Types

	Lossless image coding
	Lossy audio coding: DPCM
	Lossy image coding: JPEG

