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Suppose that θ only has one nonzero entry in the i−th position.
Then

y = ±A·,i + ω

and A·,i is the i−th column of the matrix (but we do not know
which one). This is a nice question: you have a list of vector
v1, . . . , vn in front of you. Somebody gives you

y = vi + ω.

How do you have the best chance of getting vi?
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〈y ,A·,j〉 = 〈±A·,i ,A·,j〉+ 〈ω,A·,j〉

The first term is only big when i = j , the second is always equally
random. Pick the j for which the inner product is the largest.
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y = θ + ω

Such methods are known as Matching Pursuit (Mallat & Zhang,
Gilbert & Tropp). There are many variations on it, for example
RandOMP (Elad & Yavneh), regularized OMP (Needell &
Vershynin), . . .



Other approach: Lasso

y = Aθ + w .

The Lasso (Tibshirani 1996)

‖y − Ax‖2
2 → min

‖x‖1 ≤ R

The `1−norm ‘encourages’ sparsity, a very influential idea. Many
variations, such as

‖y − Ax‖2
2 + λ · ‖x‖2

1 → min .

One version we will also consider is the ‘Trimmed Lasso’ where
sparsity is enforced by

Tk(x) = min
‖φ‖0≤k

‖x − φ‖1.
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Because of time constraints, I am not going to explain

I Iterative Support Detection (ISD), Wang & Yin 2010

I Iterated Reweighted `1−minimization (IRL1), Candes, Wakin
& Boyd (2008)

There are also many other methods.
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How do these methods compare?

64 unknown variables (say, genes) and θ ∈ {−1, 0, 1}64 has 30
nonzero entries (not that sparse) and N (0, 0.5) Gaussian noise.
How many ‘experiments’ (equations) do you need to recover θ?



How do these methods compare?

64 unknown variables and N (0, 1) Gaussian noise. Success as a
function of sparsity.
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Outline of the algorithm.

1. Pick a random subset of the equations and solve the problem
with least squares.

2. Average the results.

3. Pick the largest entry in the average as a guess for a
coordinate with a nonzero entry. Use the sign as a guess for
the sign.

4. Remove the corresponding coordinate to get a new problem
with the same number of equations and one less unknown.

5. Go back up to 1.
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Refined Least Squares (RLS)

Two small lies on the previous slide. One is ε2 (we average over
some parameters), the other one is more interesting.

We run the algorithm, detect candidates for the support and
remove them. This means that we are forced to work with less and
less signal, the noise remains constant.

At the very end, we face a familar problem: you have a list of
vector v1, . . . , vn in front of you. Somebody gives you

y = vi + ω.

How do you have the best chance of getting vi? At this stage, we
switch back to Inner Products (the OMP selection rule).
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we get a harder problem.

However, we get many harder
problems and the gain from being able to average exceeds
the increase of difficulty.
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and this principle can be implied to other methods as well.
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Some Theory

Here is a basic toy model. We have

y = Xθ + ω,

where X ∈ RN×D is a (standard) Gaussian random matrix and ω is
(standard) Gaussian noise.

How far is the least squares
approximation from the ground truth – how does least squares
handle the random error?

Proposition (Lindenbaum, S, 21)

If we fix the ratio N/D < 1 and let the dimensions of the matrix
go to infinity, then

EX ,ω‖X †y − X †Xθ∗‖ = (1 + o(1))

√
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Another theoretical perspective: we are given

y = Xθ∗ + ω,
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y = θ + ω

Thank you!


