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The Hot Spots Conjecture

Hot Spots is one of the most annoying conjectures for basic
PDEs. It has a nice and simple physical interpretation.

You have an insulated room and some non-constant initial
distribution of heat u(0, x). The heat equation runs for a long
time: where are the hottest and the coldest spots?
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The Hot Spots Conjecture

Let’s make this precise.

Let Ω ⊂ R2 be connected and consider the
equation

−∆u = λu in Ω

∂u

∂n
= 0 on ∂Ω.

Standard Theory. Constant functions are a solution for λ = 0.
There is a sequence

0 = λ0 < λ1 ≤ λ2 < . . .

for which there exists a solution φk . If λ1 < λ2 and
〈u(0, x), φ1〉 6= 0, then

u(t, x) = e−λ1t 〈u(0, x), φ1〉+ lower order terms.
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The Hot Spots Conjecture

The Hot Spots Conjecture (due to J. Rauch)

Let φ1 denote the first nontrivial eigenfunction of the Laplacian
with Neumann boundary conditions.

Then φ1 assumes its
maximum and minimum on the boundary.
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The Hot Spots Conjecture

The Hot Spots Conjecture (due to J. Rauch)

Let φ1 denote the first nontrivial eigenfunction of the Laplacian
with Neumann boundary conditions. Then φ1 assumes its
maximum and minimum on the boundary.

I Proposed in the 1970s, very little progress for a long time.

I Banuelos & Burdzy (late 90s) showed it for obtuse triangles.

I Jerison & Nadirashvili for domains with symmetry

I Burdzy & Werner (early 2000s) showed that it can fail for
domains that are not simply connected.

I Atar & Burdzy (2004) on lip domains.

I Burdzy (2005): counterexample with one hole.

I Polymath Project (early 2010s)

I Judge & Mondal (2018) showed it for triangles.
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Very Recent: Numerical Counterexamples (Kleefeld)

Andreas Kleefeld (Forschungszentrum Jülich Gmbh) recently used
high-precision numerical techniques to produce examples of explicit
domains where the Hot Spot conjecture fails. Here is one:
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Very Recent: Numerical Counterexamples (Kleefeld)

Andreas Kleefeld (Forschungszentrum Jülich Gmbh) recently used
high-precision numerical techniques to produce examples of explicit
domains where the Hot Spot conjecture fails. Here is another one:
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These examples also lead to the first accurate guess for

sup
Ω

maxx∈Ω u(x)

maxx∈∂Ω u(x)
≥ 1 + ε

I refer to Andreas’ paper for details.
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A Related Result

Suppose you have a long convex domain Ω ⊂ R2. Let us fix
N = diam(Ω) and inrad(Ω) = 1.

Thus, the domain looks a bit like

N

1

Where do we expect maxima and minima to be? On the boundary,
certainly, but also at opposite ends!
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A Related Result

x1 x2

Theorem (S, 2019)

There exists a universal c > 0 such that for all bounded, convex
Ω ⊂ R2: if x1, x2 ∈ Ω are at maximal distance,

‖x1 − x2‖ = diam(Ω),

then φ1 assumes every global maximum and minimum at distance
at most c · inrad(Ω) from {x1, x2}, where inrad(Ω) denotes the
inradius of Ω.

The proof is interesting – if you don’t like Brownian motion, feel
free to ignore, I will explain things on Graphs later!
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Sketch of the Proof

We know roughly how the first nontrivial eigenfunction behaves in
a long skinny domain (see

N

1 nodal line +−
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∂Ω

xmax

∂Ω

to the nodal line

x∗

Suppose the maximum is in xmax. Then ∇u(xmax) = 0 and the
local behavior is given by the second derivative. The Laplacian is
∆ = trD2, so we get some local estimates. We get that the
function is locally flat.
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Sketch of the Proof

Let ωx(t) denote a Brownian motion started in x and running up
to time t (being reflected on the boundary of Ω), then

eµ1tE (φ1(ωx(t))) = φ1(x).

∂Ω

xmax

∂Ω

to the nodal line

x∗

use here

Markov property!
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(Roy Lederman, Yale Statistics)

Chatting after lunch in front of
the Stats Department: “What
happens if you try it on trees?”



Hot Spots on Graphs
This raises a really interesting question: what about the Hot Spots
conjecture on graphs?

There is a notion of eigenfunctions because there is a notion of a
Laplacian. If f : V → R, then

(Lf )(v) =
∑
w∼E v

f (w)− f (v).

In terms of linear algebra, L = D − A, where D is the diagonal
matrix recording the degree of vertices and A is the adjacency
matrix. (There are other notions of the Laplacian on Graphs but
we will focus on this one henceforth). So, in particular, there is
something like the first ‘nontrivial’ eigenvector.

λ2(G ) = min
x⊥1

∑
vi∼E vj

(xi − xj)
2∑n

i=1 x
2
i

.
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Hot Spots on Graphs

This raises a really interesting question: what about the Hot Spots
conjecture on graphs?

Eigenfunctions are defined. But what is the ‘boundary of a graph’?

If the graph is a tree, then the boundary is simply a ‘leaf’ (a vertex
of degree 1). But there should be some interesting general results.

In particular, if you can prove something nice on Graphs, it may
just translate to the continuous setting (graphs are harder but also
change your perspective).
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change your perspective).



Theorem (Fiedler)

The induced subgraph on {v ∈ V : φ2(v) ≥ 0} is connected.



Hot Spots on Trees

It had been suggested that if the graph is a tree, then maybe the
hottest and the coldest spot are at the ends of a longest path.
This turns out to be false.

minimum assumed here

maximum assumed here

Figure: The ‘Fiedler rose’ counterexample of Evans (2011).



Hot Spots on Trees

It had been suggested that if the graph is a tree, then maybe the
hottest and the coldest spot are at the ends of a longest path.
This turns out to be false.

minimum assumed here

maximum assumed here

Figure: The ‘Fiedler rose’ counterexample of Evans (2011).



A Representation Formula

Let us fix G = (V ,E ) to be a Graph on n vertices. Let v1, v2 be
two arbitrary vertices. We introduce a game that results in a
representation formula for eigenvector φ2 associated to the
eigenvalue λ2. (It also works for other eigenvectors.)

1. You start with zero payoff and in the vertex vs .

2. If you find yourself in a vertex w 6= vt ,

2.1 add λk · φk(w)/deg(w) to your payoff and
2.2 then jump to a randomly chosen neighbor of w .

3. If you find yourself in the vertex w = vt , the game ends.

Theorem (Lederman and S., 2019)

E (payoff) = φ2(vs)− φ2(vt).
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A Representation Formula

Theorem (Lederman and S., 2019)

E (payoff) = φ2(vs)− φ2(vt).

vt vs

Pick vt such that φ2(vt) > 0. Then, by Fiedler’s theorem, φ2 is
positive on the right half. The game is thus positive and we have
monotonicity.



Theorem (Lederman and S., 2019)

E (payoff) = φ2(vs)− φ2(vt).

T

path of length dd/4

tree that traps random walk

and has diameter � d

Figure: A generic counterexample to the conjecture that things happen at
the endpoints of the longest path.

What’s important is not length, it’s number of steps in the game.
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Caterpillar Graphs are trees where, if you remove the vertices of
degree 1, you have a path.

Theorem (Gernandt & Pade)

On a caterpillar graph, maxima and minima of φ2 are assumed at
the endpoints of the longest path.
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Theorem (Gernandt & Pade)

On a caterpillar graph, maxima and minima of φ2 are assumed at
the endpoints of the longest path.

We were interested in whether this can be generalized, after all,
the only important thing is to not get stuck.

1 2 diam(G )k

Gk,1 Gk,2

Figure: The class of admissible graphs: a long path whose attached
Graphs are connected to exactly one vertex on the path and do not have
any connections between them.
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Figure: The class of admissible graphs: a long path whose attached
Graphs are connected to exactly one vertex on the path and do not have
any connections between them.

We also define hit(Gk,i ) as the largest expected number of steps
necessary until you hit the path. The idea is that this should be
small.

If Gk,i is a path of length `, then hit(Gk,i ) ∼ `2.
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small. If Gk,i is a path of length `, then hit(Gk,i ) ∼ `2.
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Gk,1 Gk,2

Theorem (Lederman and S)

Suppose that each graph Gk,i attached to vertex k satisfies

1. the attached Graph Gk,i does not have too many vertices

|Gk,i | ≤
diam(G )

32
.

2. and the hitting time is not too large

hit(Gk,i ) ≤
1

50
min {k, diam(G )− k}2 .

Then the second eigenvector of the Graph Laplacian assumes its
extrema at the endpoints of the graph.
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Gk,1 Gk,2

Corollary (Lederman and S)

If Gk,i is a path graph, then maxima and minima of φ2 are
assumed at the end of the longest path if

length(Gk,i ) < c ·min {k, n − k} .

We get this for some universal c > 0 but maybe c = 1?
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assumed at the end of the longest path if

length(Gk,i ) < c ·min {k, n − k} .

We get this for some universal c > 0 but maybe c = 1?



1 2 diam(G )k

Gk,1 Gk,2

In summary, the Hot Spots conjecture is interesting and there
should be interesting versions of it on Graphs.


