The Hot Spots Conjecture on Graphs

Stefan Steinerberger

Fernuniversität Hagen, Nov. 2020

UNIVERSITY of WASHINGTON

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - - のへで

Hot Spots is one of the most **annoying** conjectures for basic PDEs. It has a nice and simple physical interpretation.

Hot Spots is one of the most **annoying** conjectures for basic PDEs. It has a nice and simple physical interpretation.

ヘロト 人間 とくほとくほとう

Hot Spots is one of the most **annoying** conjectures for basic PDEs. It has a nice and simple physical interpretation.

You have an insulated room and some non-constant initial distribution of heat u(0, x). The heat equation runs for a long time: where are the hottest and the coldest spots?

Let's make this precise.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let's make this precise. Let $\Omega \subset \mathbb{R}^2$ be connected and consider the equation

$$-\Delta u = \lambda u \quad \text{in } \Omega$$
$$\frac{\partial u}{\partial n} = 0 \quad \text{on } \partial \Omega.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Let's make this precise. Let $\Omega \subset \mathbb{R}^2$ be connected and consider the equation

$$-\Delta u = \lambda u \quad \text{in } \Omega$$
$$\frac{\partial u}{\partial n} = 0 \quad \text{on } \partial \Omega.$$

Standard Theory. Constant functions are a solution for $\lambda = 0$.

Let's make this precise. Let $\Omega \subset \mathbb{R}^2$ be connected and consider the equation

$$-\Delta u = \lambda u \quad \text{in } \Omega$$
$$\frac{\partial u}{\partial n} = 0 \quad \text{on } \partial \Omega.$$

Standard Theory. Constant functions are a solution for $\lambda = 0$. There is a sequence

$$0 = \lambda_0 < \lambda_1 \leq \lambda_2 < \dots$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for which there exists a solution ϕ_k .

Let's make this precise. Let $\Omega \subset \mathbb{R}^2$ be connected and consider the equation

$$-\Delta u = \lambda u \quad \text{in } \Omega$$
$$\frac{\partial u}{\partial n} = 0 \quad \text{on } \partial \Omega.$$

Standard Theory. Constant functions are a solution for $\lambda = 0$. There is a sequence

$$0 = \lambda_0 < \lambda_1 \leq \lambda_2 < \dots$$

for which there exists a solution ϕ_k . If $\lambda_1 < \lambda_2$ and $\langle u(0, x), \phi_1 \rangle \neq 0$, then

 $u(t,x) = e^{-\lambda_1 t} \langle u(0,x), \phi_1 \rangle +$ lower order terms.

The Hot Spots Conjecture (due to J. Rauch)

Let ϕ_{1} denote the first nontrivial eigenfunction of the Laplacian with Neumann boundary conditions.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

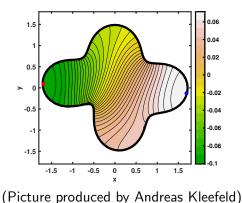
The Hot Spots Conjecture (due to J. Rauch)

Let ϕ_1 denote the first nontrivial eigenfunction of the Laplacian with Neumann boundary conditions. Then ϕ_1 assumes its maximum and minimum on the boundary.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Hot Spots Conjecture (due to J. Rauch)

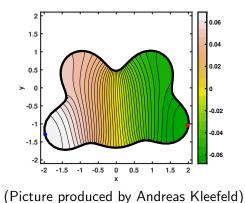
Let ϕ_1 denote the first nontrivial eigenfunction of the Laplacian with Neumann boundary conditions. Then ϕ_1 assumes its maximum and minimum on the boundary.



(日) (四) (日) (日) (日)

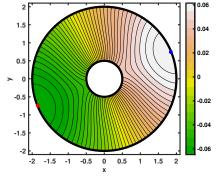
The Hot Spots Conjecture (due to J. Rauch)

Let ϕ_1 denote the first nontrivial eigenfunction of the Laplacian with Neumann boundary conditions. Then ϕ_1 assumes its maximum and minimum on the boundary.



The Hot Spots Conjecture (due to J. Rauch)

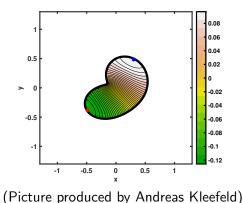
Let ϕ_1 denote the first nontrivial eigenfunction of the Laplacian with Neumann boundary conditions. Then ϕ_1 assumes its maximum and minimum on the boundary.



(Picture produced by Andreas Kleefeld)

The Hot Spots Conjecture (due to J. Rauch)

Let ϕ_1 denote the first nontrivial eigenfunction of the Laplacian with Neumann boundary conditions. Then ϕ_1 assumes its maximum and minimum on the boundary.



The Hot Spots Conjecture (due to J. Rauch)

Let ϕ_1 denote the first nontrivial eigenfunction of the Laplacian with Neumann boundary conditions. Then ϕ_1 assumes its maximum and minimum on the boundary.

The Hot Spots Conjecture (due to J. Rauch)

Let ϕ_1 denote the first nontrivial eigenfunction of the Laplacian with Neumann boundary conditions. Then ϕ_1 assumes its maximum and minimum on the boundary.

Proposed in the 1970s, very little progress for a long time.

The Hot Spots Conjecture (due to J. Rauch)

Let ϕ_1 denote the first nontrivial eigenfunction of the Laplacian with Neumann boundary conditions. Then ϕ_1 assumes its maximum and minimum on the boundary.

- Proposed in the 1970s, very little progress for a long time.
- Banuelos & Burdzy (late 90s) showed it for obtuse triangles.

The Hot Spots Conjecture (due to J. Rauch)

Let ϕ_1 denote the first nontrivial eigenfunction of the Laplacian with Neumann boundary conditions. Then ϕ_1 assumes its maximum and minimum on the boundary.

- Proposed in the 1970s, very little progress for a long time.
- Banuelos & Burdzy (late 90s) showed it for obtuse triangles.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Jerison & Nadirashvili for domains with symmetry

The Hot Spots Conjecture (due to J. Rauch)

Let ϕ_1 denote the first nontrivial eigenfunction of the Laplacian with Neumann boundary conditions. Then ϕ_1 assumes its maximum and minimum on the boundary.

- Proposed in the 1970s, very little progress for a long time.
- Banuelos & Burdzy (late 90s) showed it for obtuse triangles.
- Jerison & Nadirashvili for domains with symmetry
- Burdzy & Werner (early 2000s) showed that it can fail for domains that are not simply connected.

The Hot Spots Conjecture (due to J. Rauch)

Let ϕ_1 denote the first nontrivial eigenfunction of the Laplacian with Neumann boundary conditions. Then ϕ_1 assumes its maximum and minimum on the boundary.

- Proposed in the 1970s, very little progress for a long time.
- Banuelos & Burdzy (late 90s) showed it for obtuse triangles.
- Jerison & Nadirashvili for domains with symmetry
- Burdzy & Werner (early 2000s) showed that it can fail for domains that are not simply connected.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Atar & Burdzy (2004) on lip domains.

The Hot Spots Conjecture (due to J. Rauch)

Let ϕ_1 denote the first nontrivial eigenfunction of the Laplacian with Neumann boundary conditions. Then ϕ_1 assumes its maximum and minimum on the boundary.

- Proposed in the 1970s, very little progress for a long time.
- Banuelos & Burdzy (late 90s) showed it for obtuse triangles.
- Jerison & Nadirashvili for domains with symmetry
- Burdzy & Werner (early 2000s) showed that it can fail for domains that are not simply connected.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Atar & Burdzy (2004) on lip domains.
- Burdzy (2005): counterexample with one hole.

The Hot Spots Conjecture (due to J. Rauch)

Let ϕ_1 denote the first nontrivial eigenfunction of the Laplacian with Neumann boundary conditions. Then ϕ_1 assumes its maximum and minimum on the boundary.

- Proposed in the 1970s, very little progress for a long time.
- Banuelos & Burdzy (late 90s) showed it for obtuse triangles.
- Jerison & Nadirashvili for domains with symmetry
- Burdzy & Werner (early 2000s) showed that it can fail for domains that are not simply connected.
- Atar & Burdzy (2004) on lip domains.
- Burdzy (2005): counterexample with one hole.
- Polymath Project (early 2010s)

The Hot Spots Conjecture (due to J. Rauch)

Let ϕ_1 denote the first nontrivial eigenfunction of the Laplacian with Neumann boundary conditions. Then ϕ_1 assumes its maximum and minimum on the boundary.

- Proposed in the 1970s, very little progress for a long time.
- Banuelos & Burdzy (late 90s) showed it for obtuse triangles.
- Jerison & Nadirashvili for domains with symmetry
- Burdzy & Werner (early 2000s) showed that it can fail for domains that are not simply connected.

- Atar & Burdzy (2004) on lip domains.
- Burdzy (2005): counterexample with one hole.
- Polymath Project (early 2010s)
- Judge & Mondal (2018) showed it for triangles.

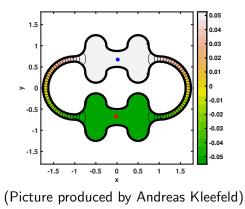
The Hot Spots Conjecture (due to J. Rauch)

Let ϕ_1 denote the first nontrivial eigenfunction of the Laplacian with Neumann boundary conditions. Then ϕ_1 assumes its maximum and minimum on the boundary.

- Proposed in the 1970s, very little progress for a long time.
- Banuelos & Burdzy (late 90s) showed it for obtuse triangles.
- Jerison & Nadirashvili for domains with symmetry
- Burdzy & Werner (early 2000s) showed that it can fail for domains that are not simply connected.
- Atar & Burdzy (2004) on lip domains.
- Burdzy (2005): counterexample with one hole.
- Polymath Project (early 2010s)
- Judge & Mondal (2018) showed it for triangles.

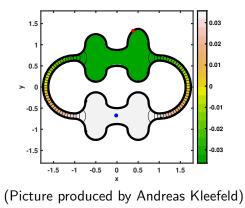
Andreas Kleefeld (Forschungszentrum Jülich Gmbh) recently used high-precision numerical techniques to produce examples of explicit domains where the Hot Spot conjecture fails. Here is one:

Andreas Kleefeld (Forschungszentrum Jülich Gmbh) recently used high-precision numerical techniques to produce examples of explicit domains where the Hot Spot conjecture fails. Here is one:

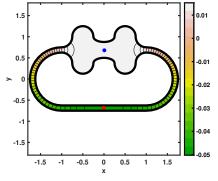


(日)

Andreas Kleefeld (Forschungszentrum Jülich Gmbh) recently used high-precision numerical techniques to produce examples of explicit domains where the Hot Spot conjecture fails. Here is another one:

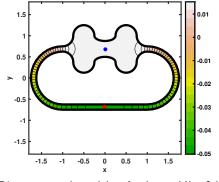


・ロト ・四ト ・ヨト ・ヨト ・ヨ



(Picture produced by Andreas Kleefeld)

イロト イヨト イヨト



(Picture produced by Andreas Kleefeld)

These examples also lead to the first accurate guess for

$$\sup_{\Omega} \frac{\max_{x\in\Omega} u(x)}{\max_{x\in\partial\Omega} u(x)} \geq 1+\varepsilon$$

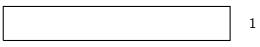
イロト イポト イラト イラト

I refer to Andreas' paper for details.

Suppose you have a long convex domain $\Omega \subset \mathbb{R}^2$. Let us fix $N = \operatorname{diam}(\Omega)$ and $\operatorname{inrad}(\Omega) = 1$.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

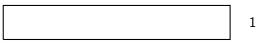
Suppose you have a long convex domain $\Omega \subset \mathbb{R}^2$. Let us fix $N = \text{diam}(\Omega)$ and $\text{inrad}(\Omega) = 1$. Thus, the domain looks a bit like



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Ν

Suppose you have a long convex domain $\Omega \subset \mathbb{R}^2$. Let us fix $N = \text{diam}(\Omega)$ and $\text{inrad}(\Omega) = 1$. Thus, the domain looks a bit like



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Ν

Where do we expect maxima and minima to be?

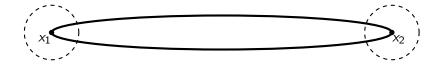
Suppose you have a long convex domain $\Omega \subset \mathbb{R}^2$. Let us fix $N = \text{diam}(\Omega)$ and $\text{inrad}(\Omega) = 1$. Thus, the domain looks a bit like

Ν

Where do we expect maxima and minima to be? On the boundary, certainly, but also at opposite ends!

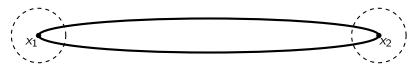
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A Related Result



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

A Related Result



Theorem (S, 2019)

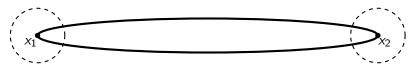
There exists a universal c > 0 such that for all bounded, convex $\Omega \subset \mathbb{R}^2$: if $x_1, x_2 \in \Omega$ are at maximal distance,

$$\|x_1-x_2\|=\mathsf{diam}(\Omega),$$

then ϕ_1 assumes every global maximum and minimum at distance at most $c \cdot \operatorname{inrad}(\Omega)$ from $\{x_1, x_2\}$, where $\operatorname{inrad}(\Omega)$ denotes the inradius of Ω .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A Related Result



Theorem (S, 2019)

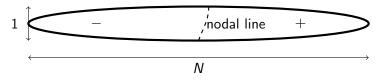
There exists a universal c > 0 such that for all bounded, convex $\Omega \subset \mathbb{R}^2$: if $x_1, x_2 \in \Omega$ are at maximal distance,

$$\|x_1-x_2\|=\mathsf{diam}(\Omega),$$

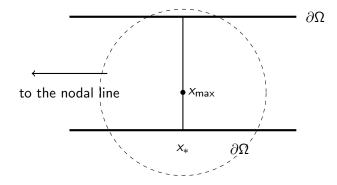
then ϕ_1 assumes every global maximum and minimum at distance at most $c \cdot \operatorname{inrad}(\Omega)$ from $\{x_1, x_2\}$, where $\operatorname{inrad}(\Omega)$ denotes the inradius of Ω .

The proof is interesting – if you don't like Brownian motion, feel free to ignore, I will explain things on Graphs later!

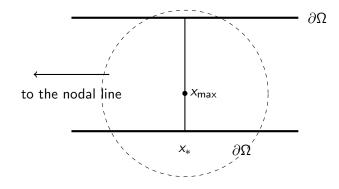
We know roughly how the first nontrivial eigenfunction behaves in a long skinny domain (see



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

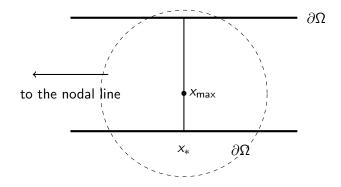


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



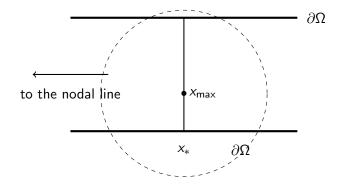
▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Suppose the maximum is in x_{max} .

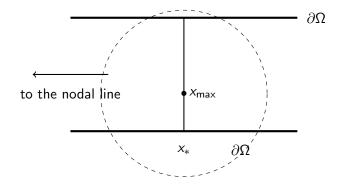


Suppose the maximum is in x_{max} . Then $\nabla u(x_{max}) = 0$ and the local behavior is given by the second derivative.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



Suppose the maximum is in x_{max} . Then $\nabla u(x_{max}) = 0$ and the local behavior is given by the second derivative. The Laplacian is $\Delta = trD^2$, so we get some local estimates.



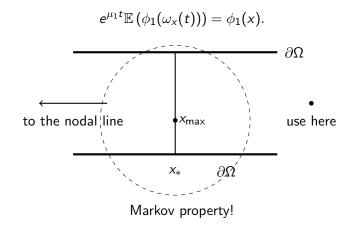
Suppose the maximum is in x_{max} . Then $\nabla u(x_{max}) = 0$ and the local behavior is given by the second derivative. The Laplacian is $\Delta = \text{tr}D^2$, so we get some local estimates. We get that the function is locally flat.

Let $\omega_x(t)$ denote a Brownian motion started in x and running up to time t (being reflected on the boundary of Ω), then

 $e^{\mu_1 t} \mathbb{E} \left(\phi_1(\omega_x(t)) \right) = \phi_1(x).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $\omega_x(t)$ denote a Brownian motion started in x and running up to time t (being reflected on the boundary of Ω), then



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(Roy Lederman, Yale Statistics)

Chatting after lunch in front of the Stats Department: "What happens if you try it on trees?"

(日)

э

This raises a really interesting question: what about the Hot Spots conjecture on graphs?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

This raises a really interesting question: what about the Hot Spots conjecture on graphs?

There is a notion of eigenfunctions because there is a notion of a Laplacian. If $f: V \to \mathbb{R}$, then

$$(Lf)(v) = \sum_{w \sim FV} f(w) - f(v).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

This raises a really interesting question: what about the Hot Spots conjecture on graphs?

There is a notion of eigenfunctions because there is a notion of a Laplacian. If $f: V \to \mathbb{R}$, then

$$(Lf)(v) = \sum_{w \sim E^{v}} f(w) - f(v).$$

In terms of linear algebra, L = D - A, where D is the diagonal matrix recording the degree of vertices and A is the adjacency matrix. (There are other notions of the Laplacian on Graphs but we will focus on this one henceforth).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

This raises a really interesting question: what about the Hot Spots conjecture on graphs?

There is a notion of eigenfunctions because there is a notion of a Laplacian. If $f: V \to \mathbb{R}$, then

$$(Lf)(v) = \sum_{w \sim E^{v}} f(w) - f(v).$$

In terms of linear algebra, L = D - A, where D is the diagonal matrix recording the degree of vertices and A is the adjacency matrix. (There are other notions of the Laplacian on Graphs but we will focus on this one henceforth). So, in particular, there is something like the first 'nontrivial' eigenvector.

$$\lambda_2(G) = \min_{x \perp 1} \frac{\sum_{v_i \sim E} v_j (x_i - x_j)^2}{\sum_{i=1}^n x_i^2}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This raises a really interesting question: what about the Hot Spots conjecture on graphs?

Eigenfunctions are defined. But what is the 'boundary of a graph'?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This raises a really interesting question: what about the Hot Spots conjecture on graphs?

Eigenfunctions are defined. But what is the 'boundary of a graph'? If the graph is a tree, then the boundary is simply a 'leaf' (a vertex of degree 1).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

This raises a really interesting question: what about the Hot Spots conjecture on graphs?

Eigenfunctions are defined. But what is the 'boundary of a graph'? If the graph is a tree, then the boundary is simply a 'leaf' (a vertex of degree 1). But there should be some interesting general results.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

This raises a really interesting question: what about the Hot Spots conjecture on graphs?

Eigenfunctions are defined. But what is the 'boundary of a graph'? If the graph is a tree, then the boundary is simply a 'leaf' (a vertex of degree 1). But there should be some interesting general results.

In particular, if you can prove something nice on Graphs, it may just translate to the continuous setting (graphs are harder but also change your perspective).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Fiedler) The induced subgraph on $\{v \in V : \phi_2(v) \ge 0\}$ is connected.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Hot Spots on Trees

It had been suggested that if the graph is a tree, then maybe the hottest and the coldest spot are at the ends of a longest path. This turns out to be false.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Hot Spots on Trees

It had been suggested that if the graph is a tree, then maybe the hottest and the coldest spot are at the ends of a longest path. This turns out to be false.

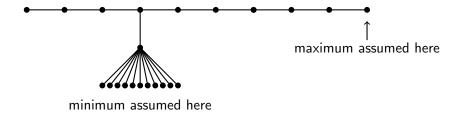


Figure: The 'Fiedler rose' counterexample of Evans (2011).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let us fix G = (V, E) to be a Graph on *n* vertices. Let v_1, v_2 be two arbitrary vertices. We introduce a game that results in a representation formula for eigenvector ϕ_2 associated to the eigenvalue λ_2 . (It also works for other eigenvectors.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let us fix G = (V, E) to be a Graph on *n* vertices. Let v_1, v_2 be two arbitrary vertices. We introduce a game that results in a representation formula for eigenvector ϕ_2 associated to the eigenvalue λ_2 . (It also works for other eigenvectors.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

1. You start with zero payoff and in the vertex v_s .

Let us fix G = (V, E) to be a Graph on *n* vertices. Let v_1, v_2 be two arbitrary vertices. We introduce a game that results in a representation formula for eigenvector ϕ_2 associated to the eigenvalue λ_2 . (It also works for other eigenvectors.)

- 1. You start with zero payoff and in the vertex v_s .
- 2. If you find yourself in a vertex $w \neq v_t$,

Let us fix G = (V, E) to be a Graph on *n* vertices. Let v_1, v_2 be two arbitrary vertices. We introduce a game that results in a representation formula for eigenvector ϕ_2 associated to the eigenvalue λ_2 . (It also works for other eigenvectors.)

- 1. You start with zero payoff and in the vertex v_s .
- 2. If you find yourself in a vertex $w \neq v_t$,

2.1 add $\lambda_k \cdot \phi_k(w) / \deg(w)$ to your payoff and

Let us fix G = (V, E) to be a Graph on *n* vertices. Let v_1, v_2 be two arbitrary vertices. We introduce a game that results in a representation formula for eigenvector ϕ_2 associated to the eigenvalue λ_2 . (It also works for other eigenvectors.)

- 1. You start with zero payoff and in the vertex v_s .
- 2. If you find yourself in a vertex $w \neq v_t$,
 - 2.1 add $\lambda_k \cdot \phi_k(w) / \deg(w)$ to your payoff and
 - 2.2 then jump to a randomly chosen neighbor of w.

Let us fix G = (V, E) to be a Graph on *n* vertices. Let v_1, v_2 be two arbitrary vertices. We introduce a game that results in a representation formula for eigenvector ϕ_2 associated to the eigenvalue λ_2 . (It also works for other eigenvectors.)

- 1. You start with zero payoff and in the vertex v_s .
- 2. If you find yourself in a vertex $w \neq v_t$,
 - 2.1 add $\lambda_k \cdot \phi_k(w) / \deg(w)$ to your payoff and
 - 2.2 then jump to a randomly chosen neighbor of w.
- 3. If you find yourself in the vertex $w = v_t$, the game ends.

Let us fix G = (V, E) to be a Graph on *n* vertices. Let v_1, v_2 be two arbitrary vertices. We introduce a game that results in a representation formula for eigenvector ϕ_2 associated to the eigenvalue λ_2 . (It also works for other eigenvectors.)

- 1. You start with zero payoff and in the vertex v_s .
- 2. If you find yourself in a vertex $w \neq v_t$,
 - 2.1 add $\lambda_k \cdot \phi_k(w) / \deg(w)$ to your payoff and
 - 2.2 then jump to a randomly chosen neighbor of w.
- 3. If you find yourself in the vertex $w = v_t$, the game ends.

Theorem (Lederman and S., 2019)

$$\mathbb{E}(\mathsf{payoff}) = \phi_2(v_s) - \phi_2(v_t).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Lederman and S., 2019)

$$\mathbb{E} (\mathsf{payoff}) = \phi_2(v_s) - \phi_2(v_t).$$

Pick v_t such that $\phi_2(v_t) > 0$. Then, by Fiedler's theorem, ϕ_2 is positive on the right half. The game is thus positive and we have monotonicity.

Theorem (Lederman and S., 2019)

$$\mathbb{E}(\mathsf{payoff}) = \phi_2(v_s) - \phi_2(v_t).$$

Theorem (Lederman and S., 2019)

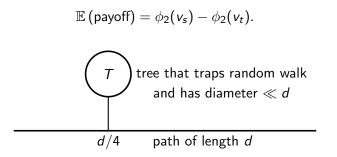


Figure: A generic counterexample to the conjecture that things happen at the endpoints of the longest path.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Lederman and S., 2019)

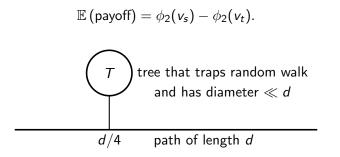
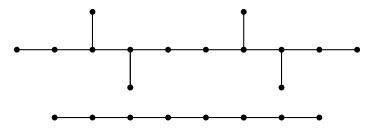


Figure: A generic counterexample to the conjecture that things happen at the endpoints of the longest path.

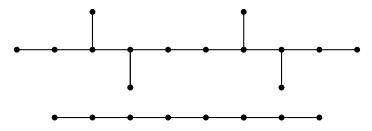
What's important is not length, it's number of steps in the game.

Caterpillar Graphs are trees where, if you remove the vertices of degree 1, you have a path.

Caterpillar Graphs are trees where, if you remove the vertices of degree 1, you have a path.



Caterpillar Graphs are trees where, if you remove the vertices of degree 1, you have a path.



Theorem (Gernandt & Pade)

On a caterpillar graph, maxima and minima of ϕ_2 are assumed at the endpoints of the longest path.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Gernandt & Pade)

On a caterpillar graph, maxima and minima of ϕ_2 are assumed at the endpoints of the longest path.

We were interested in whether this can be generalized, after all, the only important thing is to not get stuck.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Gernandt & Pade)

On a caterpillar graph, maxima and minima of ϕ_2 are assumed at the endpoints of the longest path.

We were interested in whether this can be generalized, after all, the only important thing is to not get stuck.

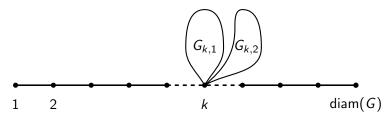


Figure: The class of admissible graphs: a long path whose attached Graphs are connected to exactly one vertex on the path and do not have any connections between them.

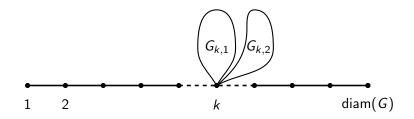


Figure: The class of admissible graphs: a long path whose attached Graphs are connected to exactly one vertex on the path and do not have any connections between them.

We also define hit($G_{k,i}$) as the largest expected number of steps necessary until you hit the path. The idea is that this should be small.

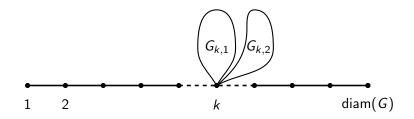
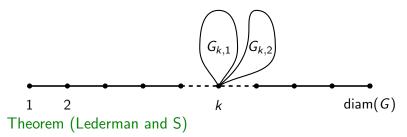
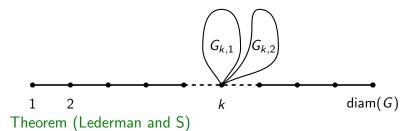


Figure: The class of admissible graphs: a long path whose attached Graphs are connected to exactly one vertex on the path and do not have any connections between them.

We also define hit($G_{k,i}$) as the largest expected number of steps necessary until you hit the path. The idea is that this should be small. If $G_{k,i}$ is a path of length ℓ , then hit($G_{k,i}$) $\sim \ell^2$.



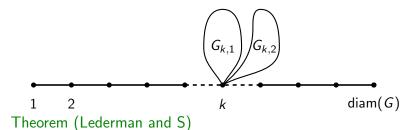
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



1. the attached Graph $G_{k,i}$ does not have too many vertices

$$|G_{k,i}| \leq \frac{\mathsf{diam}(G)}{32}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

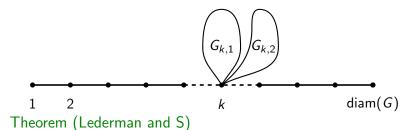


1. the attached Graph $G_{k,i}$ does not have too many vertices

$$|G_{k,i}| \leq \frac{\mathsf{diam}(G)}{32}.$$

2. and the hitting time is not too large

$$\mathsf{hit}(G_{k,i}) \leq \frac{1}{50} \min\left\{k, \mathsf{diam}(G) - k\right\}^2.$$



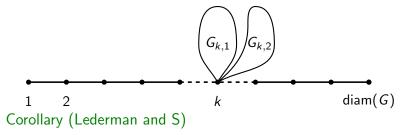
1. the attached Graph $G_{k,i}$ does not have too many vertices

$$|G_{k,i}| \leq \frac{\mathsf{diam}(G)}{32}.$$

2. and the hitting time is not too large

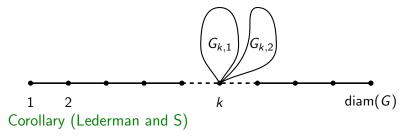
$$\mathsf{hit}(G_{k,i}) \leq rac{1}{50} \min\left\{k, \mathsf{diam}(G) - k
ight\}^2.$$

Then the second eigenvector of the Graph Laplacian assumes its extrema at the endpoints of the graph.



$$\operatorname{length}(G_{k,i}) < c \cdot \min\{k, n-k\}.$$

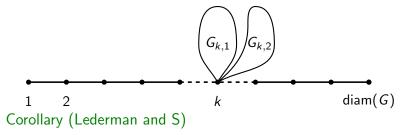
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので



$$\operatorname{length}(G_{k,i}) < c \cdot \min\{k, n-k\}.$$

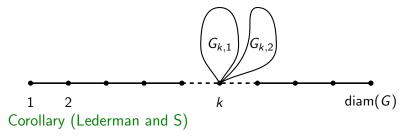
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

We get this for some universal c > 0 but maybe c = 1?



$$\operatorname{length}(G_{k,i}) < c \cdot \min\{k, n-k\}.$$

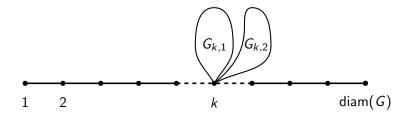
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので



$$\operatorname{length}(G_{k,i}) < c \cdot \min\{k, n-k\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

We get this for some universal c > 0 but maybe c = 1?



In summary, the Hot Spots conjecture is interesting and there should be interesting versions of it on Graphs.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで