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Optimal Coffee Shops

You want to open a coffee shop in the unit square (assume the
coffee drinking population is evenly distributed in this square).

Where's the best place to put it? Clearly in the center but why?
One could argue that you want to put it in the place xp such that
‘the averaging walking distance’

Wi (0x, dx) is minimized.
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You want to open 9 coffee shops in the unit square.

This is probably the best solution but it's less clear to me how one
would prove that quickly.
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Suppose now you open n coffee shops. How small can you make
the Wasserstein distance of

1 n
Wy <n§ j5xk,dx>?
k=1

This type of example shows that

( dek,dx> <

<o

is possible.
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The total area they cover is e2m which, for € ~ 0.01 is much less
than 1. So most of the unit square is distance at least 0.01/y/n
away from one of the points.
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So we always have

ln (o)
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and this is best possible. But that is not what you do in
practice. You start with a couple of coffee shops and if they go
well, well, then you open more.

The Coffee Shop Problem

Is there a sequence (x,)%% in [0,1]? such that for all n € N

1 < c
Wp <n;5Xk7dX> Sinl/d ?
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The Coffee Shop Problem, d =1

So how would you actually place coffee shops on [0, 1]?

0

This is known as the van der Corput sequence.

Theorem (Louis Brown and S. 2019)
For the van der Corput sequence

1< |
e (25 ) <87
k=1

n

Almost solves the coffee shop problem.





















There is also a simple definition: for « € R

xp = {na} = na — |na|
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Theorem (S. 2018)

For the Kronecker sequence

1< Vlogn
Ws <nz5xk,dx> <c

n
k=1
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Summary
For the van der Corput sequence and the Kronecker sequence

(1550 0) <

| thought that it would be quite hard to beat this.
Theorem (Cole Graham, 2020)

For every sequence in [0, 1], the inequality

( Z5x dx)_ Vl0ogn

has to hold for infinitely many n € N.
The Coffee Shop Problem is really harder in d = 1.‘
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Theorem (Louis Brown and S, 2019)

Let d > 2 and let o € RY be badly approximable. Then the
Kronecker sequence x, = ko mod 1 satisfies

N
1 _
e (N Z(;ka dX) Sca,d N 1/d

k=1

This shows that for the W5 distance, there are solutions for the

coffee shop problem in two dimensions. | do not currently know
any other example.

‘Badly approximable’ is pretty subtle number theory — are there
easier constructions?
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Theorem (Louis Brown and S, 2019)

Let d =2 and let a € R? be badly approximable. Then the
Kronecker sequence xx = ka mod 1 satisfies
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Compare to the following (cf. Gabriel Peyre's talk yesterday). If
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The Coffee Shop Problem for d = 2
Theorem (Louis Brown and S, 2019)

Let d =2 and let a € R? be badly approximable. Then the
Kronecker sequence xx = ka mod 1 satisfies

A 1
() 5 g

Compare to the following (cf. Gabriel Peyre's talk yesterday). If
you pick N points from [0, 1]? uniformly at random, then

Viog N
<N25Xk’d> VN

(Ajtai, Komlos & Tusnady 1984, Ambrosio, Stra & Trevisan 2016).
So we are talking about a couple of logarithmic factors.
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The Coffee Shop Problem for d > 3

As it turns out, the Coffee Shop Problem becomes somewhat
easier in W, once d > 3 since N random points satisfy

N
1 _
W (Nkzlaxk,dx> Sg N7V

Presumably there are many constructions for d > 3. (In practice?
How does the constant grow? What would one actually do?)

The Coffee Shop Problem
Is there a sequence (x,)%%; in [0,1]9 such that for all N € N

( Zéxk,dx> _W ?

The larger p, the harder it becomes. Phase transition for each d?
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A Very Nice Inequality

Theorem (R. Peyre, 2018)

Wa(u, dx) < llel -

If
1 N
=5 2 O
n=1
then
) N 2\ 1/2
WZ(,U'; dX Z 7 N Z 2mibx
(0 k=1

These types of exponential sums are well studied in Number
Theory! Analytic Number Theory — Optimal Transport.
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Pick a prime number p. Then

x? = k (mod p)
has solutions for k = 0 and (p — 1)/2 other numbers in
1,2,..

,p — 1}. These numbers are called quadratic residues
For example, if p = 29, then the quadratic residues are

0,1,4,5,6,7,9,13, 16,20, 22, 23,24, 25,28
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Quadratic residues mod 997

0

200 400 600 800
They seem ‘random’.

1000

«O>» «Fr «E» <

DA
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0,1,4,5,6,7,9,13,. ..
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Theorem (S. 2018)

For prime p

1272 1
W2 - (52mo ,dX 57
(sz:o e ) VP

p

281
29
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Compare to Existing Results

182
W2 725.1(2 mod p dX SJ
p k=0 p

It is natural to compare this to

Sl

#locicp-1iactomdr cpl

disc = sup —(b—a)
0<a<b<1 p
Theorem
. log p .
disc S —— Polya-Vinogradov
/P ( )
. log log p
disc S ——— Vaughan-Montgomery (GRH
7P ( (GRH))

‘There are exceptional sets but few.’
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Theorem (Cole Graham 2020)
For primes p and 2 < g <

154
Wq <25k2 mod p) 5
P> P

Sl

He also pointed out that

( Z(Sﬂ mod p> > \/t

which shows that this result is sharp.
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Learning about V2

This actually tells us something nice about v/2: consider
Xn = V2n — LﬁnJ :

5 10 3 8 1 6 4 9 2 7

Classical Theory
For each interval J C [0, 1], the number of elements of
{x1,...,xny} arein Jis = |J|N £ O(log N).

Wasserstein Distance
The amount of mass that will be exported out of or imported into

J C [0,1] is, typically, O(4/log N).
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Moving towards Sampling

Suppose you have f : [0,1]9 — R and you want to approximate

You are allowed to look in n points {xi,...,x,} C [0,1]9. Which
points do you choose?

This requires some assumptions on the function . Here, we will
capture this by using the size of the gradient ||V f]|».
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The following is very classical.

Theorem (Bakhalov, 1959)

Let f : [0,1]9 — R. Then there are points {xi,...,xy} C [0, 1]¢
such that

1
/Edf(X)X—Zka <Cd||VfHLooN1/d

If you don't know anything about the function, this is clearly best
possible. Take
f(x) = —
() = min_[lx—x.

The average distance from a point in [0,1]? to a point is ~ N—Y/d,



2

1
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1
/Td f(x)dx — fo xi)| < cq||VF|Loo—7 i

This suggests that we should take the points

Sukharev (1979) showed that this leads to the smallest constant.
Many related results (some quite recent). But what if we want
to take a sequence? On-line sampling? ‘Coffee Shops’?

Solutions of the Coffee Shop problem lead to good sequences of
points!
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Theorem (Louis Brown and S, 2019)

Let d > 2 and let a € RY be a badly approximable vector. Then,
for some ¢,, > 0 and all differentiable f : TY — R and all N € N

(d-1)/d 1/d —
/T () *Zf (ka)| < call VFI iy IV FIl ogmay N2,
k=1

» Uniformly for a sequence and
» better LP—spaces.

» In fact, this even generalizes to the standard classical grid for
which we also obtain an improvement.
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This got me interested in Kantorovich-Rubinstein duality. In the
simplest possible setting, it says the following.

Kantorovich-Rubinstein duality (special case)
If f:[0,1] — R is Lipschitz and {x1,...,xy} C [0,1]9, then

N
1
IS <9l Wi (N26Xk,dx> ,

k=1
where W, denotes the 1—Wasserstein (or Earth Mover's) Distance.

N

f(xx)
k=1

=2~

We know from all the previous arguments that

1Y 1
le,’i‘,fo W]_ (N ;(Sxka dX) ~ W
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Kantorovich-Rubinstein duality (special case)
If f:[0,1]9 — R is Lipschitz and {x1,...,xy} C [0,1]9, then

N
1
S ||Vf||Loo . W]_ <N26Xk,dx> .
k=1

N

1
f(x)dx — — f(x
/W (05— 373 s

1. very strong assumptions on the function f (Lipschitz)
2. very weak assumptions on the points (W)

Can we trade one against the other? Generally not. Consider

W1(5Xo76X1) = SL;_p |f(X0) - f(Xl)’
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» Certainly such inequalities exist: pick the Banach space
X, = L. That works (follows from Kantorovich-Rubinstein).
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» If this would be true, it would be essentially optimal.

P | can almost prove it.
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is bounded from above by
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k=1

» This actually has the sharp scaling in the endpoint.

» Improves Bakhalov in the case of the grid.
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An Interesting Lemma

Lemma (S, 2020)

Let /1« be a measure on R? such that
1. p is supported in a ball of radius R around the origin
2. p is absolutely continuous and p < dx.

Then, for all f : RY — R such that f(0) = 0, we have

[, rts )du‘<cd R u(RY) T |V F s )
Rd

| thought that this was quite interesting because its ‘doubly
isoperimetric’, both with respect to the measure and the function.
| am pretty sure the scaling is best possible.
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