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Optimal Coffee Shops

You want to open a coffee shop in the unit square (assume the
coffee drinking population is evenly distributed in this square).

Where’s the best place to put it? Clearly in the center but why?
One could argue that you want to put it in the place x0 such that
‘the averaging walking distance’

W1 (δx , dx) is minimized.
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Let us put little εn−1/2 disks around each coffee shop.

The total area they cover is ε2π which, for ε ∼ 0.01 is much less
than 1. So most of the unit square is distance at least 0.01/

√
n

away from one of the points.
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Let d ≥ 2 and let α ∈ Rd be badly approximable.

Then the
Kronecker sequence xk = kα mod 1 satisfies
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This shows that for the W2 distance, there are solutions for the
coffee shop problem in two dimensions. I do not currently know
any other example.

‘Badly approximable’ is pretty subtle number theory – are there
easier constructions?
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The amount of mass that will be exported out of or imported into
J ⊂ [0, 1] is, typically, O(
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Moving towards Sampling

Suppose you have f : [0, 1]d → R and you want to approximate∫
[0,1]d

f (x)dx .

You are allowed to look in n points {x1, . . . , xn} ⊂ [0, 1]d . Which
points do you choose?

This requires some assumptions on the function f . Here, we will
capture this by using the size of the gradient ‖∇f ‖Lp .
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Moving towards Sampling

The following is very classical.

Theorem (Bakhalov, 1959)

Let f : [0, 1]d → R. Then there are points {x1, . . . , xN} ⊂ [0, 1]d

such that ∣∣∣∣∣
∫
Td

f (x)dx − 1

N

N∑
k=1

f (xk)

∣∣∣∣∣ ≤ cd‖∇f ‖L∞
1

N1/d
.

If you don’t know anything about the function, this is clearly best
possible. Take

f (x) = min
1≤i≤n

‖x − xi‖.

The average distance from a point in [0, 1]d to a point is ∼ N−1/d .
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This suggests that we should take the points

Sukharev (1979) showed that this leads to the smallest constant.
Many related results (some quite recent). But what if we want
to take a sequence? On-line sampling? ‘Coffee Shops’?

Solutions of the Coffee Shop problem lead to good sequences of
points!
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Theorem (Louis Brown and S, 2019)

Let d ≥ 2 and let α ∈ Rd be a badly approximable vector. Then,
for some cα > 0 and all differentiable f : Td → R and all N ∈ N∣∣∣∣∣
∫
Td

f (x)dx − 1

N

N∑
k=1

f (kα)

∣∣∣∣∣ ≤ cα‖∇f ‖(d−1)/d

L∞(Td )
‖∇f ‖1/d

L2(Td )
N−1/d .

I Uniformly for a sequence and

I better Lp−spaces.

I In fact, this even generalizes to the standard classical grid for
which we also obtain an improvement.
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Kantorovich-Rubinstein

This got me interested in Kantorovich-Rubinstein duality. In the
simplest possible setting, it says the following.

Kantorovich-Rubinstein duality (special case)

If f : [0, 1]d → R is Lipschitz and {x1, . . . , xN} ⊂ [0, 1]d , then∣∣∣∣∣
∫

[0,1]d
f (x)dx − 1

N

N∑
k=1

f (xk)

∣∣∣∣∣ ≤ ‖∇f ‖L∞ ·W1

(
1

N

N∑
k=1

δxk , dx

)
,

where W1 denotes the 1−Wasserstein (or Earth Mover’s) Distance.

We know from all the previous arguments that

inf
x1,...,xN

W1

(
1

N

N∑
k=1

δxk , dx

)
∼ 1

N1/d
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Kantorovich-Rubinstein duality (special case)
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(
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N∑
k=1

δxk , dx

)
.

1. very strong assumptions on the function f (Lipschitz)

2. very weak assumptions on the points (W1)

Can we trade one against the other? Generally not. Consider

W1(δx0 , δx1) = sup
f
|f (x0)− f (x1)|.
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Kantorovich-Rubinstein Inequalities?

What I would like to know
If f : [0, 1]d → R is Lipschitz and {x1, . . . , xN} ⊂ [0, 1]d , are there
inequalities of the form∣∣∣∣∣
∫

[0,1]d
f (x)dx − 1

N

N∑
k=1

f (xk)

∣∣∣∣∣ ≤ ‖∇f ‖Xp
·Wp

(
1

N

N∑
k=1

δxk , dx

)
?

I Certainly such inequalities exist: pick the Banach space
Xp = L∞. That works (follows from Kantorovich-Rubinstein).

I The question is: can you pick a larger Banach space
(corresponding to a smaller norm)?

I And what is the best space for a given p?



Kantorovich-Rubinstein Inequalities?

What I would like to know
If f : [0, 1]d → R is Lipschitz and {x1, . . . , xN} ⊂ [0, 1]d , are there
inequalities of the form∣∣∣∣∣
∫

[0,1]d
f (x)dx − 1

N

N∑
k=1

f (xk)

∣∣∣∣∣ ≤ ‖∇f ‖Xp
·Wp

(
1

N

N∑
k=1

δxk , dx

)
?

I Certainly such inequalities exist: pick the Banach space
Xp = L∞. That works (follows from Kantorovich-Rubinstein).

I The question is: can you pick a larger Banach space
(corresponding to a smaller norm)?

I And what is the best space for a given p?



Kantorovich-Rubinstein Inequalities?

What I would like to know
If f : [0, 1]d → R is Lipschitz and {x1, . . . , xN} ⊂ [0, 1]d , are there
inequalities of the form∣∣∣∣∣
∫

[0,1]d
f (x)dx − 1

N

N∑
k=1

f (xk)

∣∣∣∣∣ ≤ ‖∇f ‖Xp
·Wp

(
1

N

N∑
k=1

δxk , dx

)
?

I Certainly such inequalities exist: pick the Banach space
Xp = L∞. That works (follows from Kantorovich-Rubinstein).

I The question is: can you pick a larger Banach space
(corresponding to a smaller norm)?

I And what is the best space for a given p?



Kantorovich-Rubinstein Inequalities?

What I would like to know
If f : [0, 1]d → R is Lipschitz and {x1, . . . , xN} ⊂ [0, 1]d , are there
inequalities of the form∣∣∣∣∣
∫

[0,1]d
f (x)dx − 1

N

N∑
k=1

f (xk)

∣∣∣∣∣ ≤ ‖∇f ‖Xp
·Wp

(
1

N

N∑
k=1

δxk , dx

)
?

I Certainly such inequalities exist: pick the Banach space
Xp = L∞. That works (follows from Kantorovich-Rubinstein).

I The question is: can you pick a larger Banach space
(corresponding to a smaller norm)?

I And what is the best space for a given p?



Kantorovich-Rubinstein Inequalities?

What I would like to know (special case, p =∞)

If f : [0, 1]d → R is Lipschitz and {x1, . . . , xN} ⊂ [0, 1]d , is there
an inequality∣∣∣∣∣
∫

[0,1]d
f (x)dx − 1

N

N∑
k=1

f (xk)

∣∣∣∣∣ ≤ cd ‖∇f ‖Ld,1 ·W∞

(
1

N

N∑
k=1

δxk , dx

)
,

where

‖f ‖Ld,1 =

∫ ∞
0
|{x : |f (x)| ≥ t}|

1
d dt ?

I Note that for the regular grid W∞ ∼ N−1/d , so we would get
improved integration estimates as well.

I If this would be true, it would be essentially optimal.

I I can almost prove it.
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∣∣∣∣∣ ≤ cd ‖∇f ‖Ld,1 ·W∞

(
1

N

N∑
k=1

δxk , dx

)
,

where

‖f ‖Ld,1 =

∫ ∞
0
|{x : |f (x)| ≥ t}|

1
d dt ?

I Note that for the regular grid W∞ ∼ N−1/d , so we would get
improved integration estimates as well.

I If this would be true, it would be essentially optimal.

I I can almost prove it.



Kantorovich-Rubinstein Inequalities?

Theorem (S, 2020)

For any f : [0, 1]d → R and any {x1, . . . , xN} ⊂ [0, 1]d ,

E =

∣∣∣∣∣
∫

[0,1]d
f (x)dx − 1

N

N∑
k=1

f (xk)

∣∣∣∣∣

is bounded from above by

E ≤ cd ·‖∇f ‖
d−1
d

L∞([0,1]d )
·‖∇f ‖

1
d

L1([0,1]d )
·N1/d ·W∞

(
dx ,

1

N

N∑
k=1

δxk

)2

.

I This actually has the sharp scaling in the endpoint.

I Improves Bakhalov in the case of the grid.
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An Interesting Lemma

Lemma (S, 2020)

Let µ be a measure on Rd such that

1. µ is supported in a ball of radius R around the origin

2. µ is absolutely continuous and µ ≤ dx .

Then, for all f : Rd → R such that f (0) = 0, we have∣∣∣∣∫
Rd

f (x)dµ

∣∣∣∣ ≤ cd · R · µ(Rd)
d−1
d · ‖∇f ‖Ld,1(‖x‖≤R)

I thought that this was quite interesting because its ‘doubly
isoperimetric’, both with respect to the measure and the function.
I am pretty sure the scaling is best possible.
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Thank you!

Stefan Steinerberger



