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Koç University



Ernst Florens Friedrich Chladni (1756 - 1827)





Philosophical Overview

I hyperbolic PDEs tend to send waves in all directions

I parabolic PDEs make things nice and smooth

I elliptic PDEs: critical points of some energy functional

The elliptic equation
−∆u = λu

is a fixed point (in time) of the parabolic equation

∂u

∂t
= (∆ + λ)u.
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Alternatively: any solution of an elliptic equation such as

−∆u = λu

gives rise to a solution of the heat equation via

u(t, x) = e−λtu(x).

Use parabolic techniques to study elliptic problems!
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Laplacian eigenfunctions: a short proof of (Cheng, 1976)



Theorem (Cheng, 1976)

If −∆u = λu on some two-dimensional domain, then any nodal
domain – nodal domain being a connected component of

{x : u(x) 6= 0}

– satisfies an open cone condition with α & λ−1/2.

α

(see also Lipman Bers, 1955)
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Theorem (Cheng, 1976)

If −∆u = λu, then any nodal domain satisfies an open cone
condition with α & λ−1/2.

Idea. Start a heat equation with Dirichlet conditions:

u(t, x) = e−λtu(x).

α

At the same time: solve via Brownian motion!
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u(t, x) = E
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0 otherwise.
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Figure: If the angle is too narrow...
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(1, 0)(0, 0)

Suffices: Let B(t) be a Brownian motion started in (1, 0). Define
a stopping time

T (r) = inf {t ≥ 0 : |B(t)| = r} .

Then, for r > 1,

P (B[0,T (r)] ⊂W (α)) =
2

π
arctan

(
2r

π
α

r
2π
α − 1

)
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Laplacian eigenfunctions: a bound on avoided crossings

The idea is that nodal lines cannot run in parallel for arbitrarily
long time.
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Avoided crossings



a

b

scale λ−α

Theorem (S, Comm. PDE, 2014)

Suppose −∆u = λu on a two-dimensional manifold and
{x : u(x) = 0} has the local structure as seen in the picture.

Then
d(a, b) ≤ Cλ1/2−α log λ

for some constant C <∞ depending only on (M, g).

(see also Donnelly & Fefferman (1990) and Mangoubi (2010))
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Neighboring square has to have slightly larger function values to
balance the massive decay induced by absorbtion on the boundary
(’rapid growth of elliptic equations in narrow channels’, cf. the
work of Landis).



Energy Landscape of Schrödinger operators



Schrödinger operators

Consider a nice domain Ω ⊂ R2 and a potential V : R2 → [0,∞).
Where are the eigenfunctions of

−∆ + V ?

Figure: Filoche & Mayboroda, (PNAS, 2012)
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Whenever an eigenfunction crosses a barrier: exponential decay.

Figure: Filoche & Mayboroda, (PNAS, 2012)



Known results

Theorem (Arnold, G. David, Filoche, Jerison & Mayboroda,
Phys Rev 2016)

Exponential decay related to Agmon’s inequality.

1/v(x) is an effective effective potential.



Apply the heat equation and counteract the heat equation at the
same time.

u(x) = eλtu(t, x)

Using Feynman-Kac gives, for every t > 0,

u(x) = Ex

(
u(ω(t))eλt−

∫ t
0 V (ω(z))dz

)
.



Why is the landscape function so good?

Apply Feynman-Kac again: compute et(∆−V )v(x) in two ways.

First computation. Since

(−∆ + V )v = 1 and thus et(∆−V )v(x) = v(x)− t + o(t).

Second computation. Feynman-Kac:

(et(∆−V )v)(x) ∼ v(x)− v(x)Ex

∫ t

0
V (ω(z))dz .

This relates the landscape function and the path integral via

t ∼ v(x)Ex

∫ t

0
V (ω(z))dz .

(S, Proc. Amer. Math. Soc, 2017)
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Making this precise

Recall that

〈(−∆ + V )u, u〉 =

∫
Ω
|∇u|2dx +

∫
Ω
Vudx .

When trying to predict the location of localized eigenfunctions
(−∆ + V )u = λu, the relevant quantity should be some sort of
local average of V around a point.

This means we are looking for a type of averaging kernel kt such
that

(kt ∗ V )(x) =

∫
V (x + y)kt(y)dy

describes the local localization energy. There exists a unique
optimal kt!. And the kernel is naturally related to the
Filoche-Mayboroda landscape function!
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Making this precise

Figure: The radial profiles of the convolution kernel kt(r) in d = 1
dimensions (left) and d = 2 (right).

These kernels have different closed forms in different dimensions,
for example

kt(r) =
1√
πt

exp

(
− r2

4t

)
− r

2t
erfc

(
r

2
√
t

)
(d = 1)

kt(r) =
1

4πt
Γ

(
0,

r2

4t

)
(d = 2).
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Making this precise

In the next picture: we show (1) the behavior of the
Filoche-Mayboroda landscape function, (2) the behavior of kt ∗ V
and (3) the localization of the first few eigenfunctions of −∆ + V .
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Making this precise

Theorem (S., Comm. PDE, 2021)

Let Ω ⊂ Rn be an open, bounded domain with smooth boundary,
let 0 ≤ V ∈ C (Ω) be a continuous potential and let φ be a
solution of

(−∆ + V )φ = λφ in Ω

φ = 0 on ∂Ω.

Then, for any fixed x ∈ Ω, as t → 0, we have, for kt as above,

−∆φ(x) + (V ∗ kt)(x)φ(x) = λφ(x) +Oφ,‖V ‖L∞ (t),

where the implicit constant depends only on φ and ‖V ‖L∞ .
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Lieb’s inradius result and the
Polya-Szegő conjecture

Polya



The Orchester Principle (conjectured by Polya-Szegő, 1951)

If a two-dimensional drum produces low frequency, the drum is
‘big’. In fact, the drum has to have a big inradius!

Mathematically, for Ω ⊂ R2, we have the lowest frequency

λ1(Ω) = inf
f 6=0

∫
Ω |∇u|

2dx∫
Ω |u|2dx

∼ 1

inradius2

The Orchester Principle (Makai 1965, Hayman 1978)

There exist constants c1, c2 such that

c1

inradius2
≤ λ1(Ω) ≤ c2

inradius2
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Theorem (M. Rachh and S, Comm.
Pure Applied Math. 2017)

Let Ω ⊂ R2 be simply connected and
u : Ω→ R2 vanish on ∂Ω. If u assumes a
global extremum in x0 ∈ Ω, then

inf
y∈∂Ω

‖x0 − y‖ ≥ c

∥∥∥∥∆u

u

∥∥∥∥−1/2

L∞(Ω)

.

x y

Ω



Theorem (Rachh and S, Comm. Pure
Applied Math. 2017)

Let Ω ⊂ R2 be simply connected and
u : Ω→ R2 vanish on ∂Ω. If u assumes a
global extremum in x0 ∈ Ω, then

inf
y∈∂Ω

‖x0 − y‖ ≥ c

∥∥∥∥∆u

u

∥∥∥∥−1/2

L∞(Ω)

.

Idea behind the proof. If an eigenfunction assumes a maximum
in x0 ∈ Ω, then any Brownian motion started there has likelihood
< 70% of hitting the boundary within time t = λ−1.



Lieb’s theorem

Such results are impossible in dimensions ≥ 3: one can take a ball
and remove one-dimensional lines without affecting the PDE.



Theorem (Elliott Lieb, 1984, Inventiones)

Ω contains a (1− ε)-fraction of a ball with radius

r ∼ cε√
λ1(Ω)



Theorem (Rachh and S, Comm. Pure Applied Math. 2017)

Let −∆u = Vu with Dirichlet conditions. Then Ω contains a
(1− ε)-fraction of a ball with radius

r ∼ cε√
‖V ‖L∞

centered around the maximum of u.

(Lierl & S, Comm. PDE 2018: the L∞ can, in some sense, be
replaced by the Lorentz space Ln/2,1)
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Quantilized Donsker-Varadhan estimates



?

M. Donsker and S. Varadhan, On a variational formula for the
principal eigenvalue for operators with maximum principle, PNAS
1975



Donsker-Varadhan

Setup: Ω ⊂ Rn and

Lu = −div(a(x)∇u) +∇V · ∇u.

Question. What is the smallest λ > 0 for which

Lu = λu has a solution with u
∣∣
∂Ω

= 0?

Donsker-Varadhan: associate a drift diffusion process.



Donsker-Varadhan

Setup: Ω ⊂ Rn and

Lu = −div(a(x)∇u) +∇V · ∇u.

Question. What is the smallest λ > 0 for which

Lu = λu has a solution with u
∣∣
∂Ω

= 0?

Donsker-Varadhan: associate a drift diffusion process.



Donsker-Varadhan

Donsker-Varadhan: associate a drift diffusion process.

This gives a
random process (for −∆ this is just Brownian motion). We start
the process and ask how long it takes to leave the domain. This
gives a lower bound on the eigenvalue.

Donsker-Varadhan inequality

λ1 ≥
1

supx∈Ω Ex τΩc
.
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Instead of looking at the
mean of the first exist time,
we study quantiles:

let
dp,∂Ω : Ω → R≥0 be
the smallest time t such
that the likelihood of exit-
ing within that time is p.
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log (1/p)

supx∈Ω dp,∂Ω(x)
.

Moreover, as p → 0, the lower bound converges to λ1.
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Example 1

Let us consider
L = −∆ on [0, 1].

Then λ1 = π2.

p 1/2 1/4 10−1 10−2 10−8 Donsker-Varadhan
lower bound 7.28 8.40 8.92 9.39 9.74 8



Example 2

Let us consider

L = −∆ +∇
(

1

2
x2

)
on [0, 1].

Then λ1 = 2.

p 0.5 0.3 0.2 0.1 0.05 Donsker-Varadhan
lower bound 1.52 1.67 1.74 1.79 1.83 1.678



An upper bound on the Hot Spots constant



Let Ω ⊂ Rd and consider the first nontrivial eigenfunction

−∆u = λ2u in Ω

∂u

∂n
= 0 on ∂Ω

This PDE governs the long-time behavior of the heat equation in
an insulated domain.

Hot Spots Conjecture (Rauch, 1974)

For ‘nice’ domains, the maxima and minima of a solution of this
equation are ‘usually’ on the boundary.

Question: what is ‘nice’? Probably convex is enough, maybe even
simply connected.
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The Hot Spots Conjecture

The Hot Spots Conjecture (due to J. Rauch)

Let φ1 denote the first nontrivial eigenfunction of the Laplacian
with Neumann boundary conditions. Then φ1 assumes its
maximum and minimum on the boundary.

I Proposed in the 1970s, very little progress for a long time.

I Banuelos & Burdzy (late 90s) showed it for obtuse triangles.

I Jerison & Nadirashvili for domains with symmetry

I Burdzy & Werner (early 2000s) showed that it can fail for
domains that are not simply connected.

I Atar & Burdzy (2004) on lip domains.

I Burdzy (2005): counterexample with one hole.

I Polymath Project (early 2010s)

I Judge & Mondal (2018) showed it for triangles.
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−∆u = λ2u in Ω

∂u

∂n
= 0 on ∂Ω

In summary, we sometimes have

max
x∈Ω

u(x) = max
x∈∂Ω

u(x)

and sometimes not. An example of Kleefeld (arXiv, 2021) gives

max
x∈Ω

u(x) ≥ 1.001 · max
x∈∂Ω

u(x).

So a natural question is: can the maximum be a lot bigger?
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−∆u = λ2u in Ω

∂u

∂n
= 0 on ∂Ω

Theorem (S, arXiv 2021)

Let Ω ⊂ Rd be simply connected with smooth boundary. Then

max
x∈Ω

u(x) ≤ 60 · max
x∈∂Ω

u(x).

What is really nice is that the result is uniform in the domain and
the dimension. As d →∞, the constant converges to√
ee ∼ 3.89 . . . .
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Thank you!


