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Thomas Kuhn

So long as the tools a paradigm
supplies continue to prove

capable of solving the problems
it defines, science moves fastest
and penetrates most deeply

through confident employment
of those tools. (The Structure
of Scientific Revolutions, 1962)

The point of this talk is to mention some open problems and some
partial results. The hope is that these are not (all) insanely hard,
that they are not very well known and that progress is possible.
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Approximate Plan

16 problems (where ≥ 9 are not impossible)

Lecture 1

1. The first Erdős problem

2. Littlewood Cosine, Chowla Cosine

3. Hardy-Littlewood Maximal Rigidity

4. Sum of Two Squares

Lecture 2

1. Cosine Sign Correlation, Maximal Geodesic Averages, Signed Orthogonality Problems

2. Directional Poincaré

3. Kakeya on the Sphere, Motzkin-Schmidt

4. Number of Critical Points

Lecture 3

1. Spooky Action at a Distance

2. Opaque Sets

3. The Averaging Problem

4. Kozma-Oravecz Inequalities



The first Erdős problem

This problem is somewhat well known in Additive Combinatorics
but not in Fourier Analysis – and Fourier Analysis gives the best
results.

Suppose we have a set of n integers with the property that
every the sum of all the elements in each subset uniquely identifies
the subset. A canonical example are the powers of 2, that is
1, 2, 3, . . . , 2n−1. If we know a number n, then we can write down
its binary expansion.

Conjecture (Erdős1, 1930s)

The powers of 2 are ‘almost’ the most efficient example. More
precisely, for some universal c > 0,

an > c · 2n

1perhaps my first serious conjecture which goes back to 1931 or 32
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Upper Bounds

Conjecture (Erdős2, 1930s)

The powers of 2 are ‘almost’ the most efficient example. More
precisely, for some universal c > 0,

an > c · 2n

Using 1, 2, 3, . . . , 2n−1 shows that c ≤ 1/2 is possible.

A good
example can be used to produce infinitely many.

Basic Tensor Construction
If we have a1, . . . , an with distinct subset sums and an ≤ c2n, then

1, 2a1, 2a2, . . . , 2an

has the subset sum property and an+1 ≤ c2n+1.

2perhaps my first serious conjecture which goes back to 1931 or 32
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Upper Bounds

Theorem (Conway-Guy, 1968)

Examples with an ≤ 0.235... · 2n exist. [Conway-Guy sequence]

Further improvements by Lunnon and Bohman: ≤ 0.22002 · 2n
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Lower bounds

Trivial lower bound
There are 2n such ‘subset sums’,

the largest of which is

a1 + a2 + · · ·+ an ≤ n · an.

If all distinct, then 2n ≤ n · an and

an >
2n

n
.

Lower bound (Moser, 1950s)

an > c
2n√
n
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Moser’s proof
The random walk

X = ±a1 ± a2 ± a3 · · · ± an

assumes 2n different values with likelihood 2−n

because it can be
written as

X = (a1 + a2 + · · ·+ an)− 2 (subset with −) .

Variance is smallest when X is concentrated around the origin, then

EX 2 ≥
2n−1∑

k=−2n−1

k2 · 1

2n
∼ 2

3

(
2n−1

)3 1

2n
∼ c · 4n.

An explicit computation shows

EX 2 =
n∑

i=1

a2i ≤ n · a2n and we are done.
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Lower bound (Moser, 1950s)

an > c
2n√
n

c ≥ 1/4 Erdős and Moser

≥ 2/33/2 Alon and Spencer

≥ 1/
√
π Elkies

≥ 1/
√
3 Bae, Guy

≥
√
3/2π Aliev

≥
√
2/π Elkies, Gleason, unpublished

≥
√
2/π Dubroff, Fox and Xu

≥
√
2/π S



Lower bound (Elkies-Gleason, Dubroff-Fox-Xu, S)

an >

(√
2

π
− o(1)

)
· 2n√

n
.

Where’s the Fourier Analysis?

Reformulation (Elkies, 1986)

For any a1, . . . , an ∈ N∫ 1

0

n∏
i=1

cos(2πaix)
2dx ≥ 1

2n
.

Does equality force an ≳ 2n?
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0

n∏
i=1

cos(2πaix)
2dx ≥ 1

2n
.

Idea behind the equality is relatively simple: the random walk is a
convolution of Dirac measures(

δa1 + δ−a1

2

)
∗
(
δa2 + δ−a2

2

)
∗ · · · ∗

(
δan + δ−an

2

)
and we know that the arising measures has to be of the form(

δa1 + δ−a1

2

)
∗ · · · ∗

(
δan + δ−an

2

)
=

1

2n

2n∑
i=1

δxi

with |xi − xj | ≥ 2. Then convolve with a bump function and
compute L2−norms. A bit of flexibility in the bump function.
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For any a1, . . . , an ∈ N∫ 1

0

n∏
i=1

cos(2πaix)
2dx ≥ 1

2n
.

Note that ∫ 1

0
cos(2πaix)

2dx =
1

2
.

It’s a question of cosines being aligned. They are all aligned at 0.
If an is very small, then argue∫ 1

0

n∏
i=1

cos(2πaix)
2dx ≥

∫ 1
an

− 1
an

n∏
i=1

cos(2πaix)
2dx

and use Taylor expansion cos x ≥ 1− x2/2. Already gives c2n/
√
n.
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This is all reminiscent of the Fourier Analysis proof of the Central
Limit Theorem.

Not a coincidence: hypothetical counterexamples
have to have a distribution ‘close’ to that of a Gaussian.
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Littlewood’s Cosine Problem

Littlewood (1950s)

Given A ⊂ N, consider f : [0, 2π] → R given by

f (x) =
∑
a∈A

cos (ax).

How many roots does the function f has to have? Mean value
being 0 implies there are at least 2. Littlewood conjectured ≳ |A|
(sharp for the Dirichlet kernel) which is false but maybe ≳ |A|2/3.

Bedert (2024)

# {x ∈ [0, 2π] : f (x) = 0} ≳ (log log |A|)1+o(1).
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Warning (Sahasrabudhe), the function

f (x) = 2 cos (x) +
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k=2

sin

(
kπ

2

)
cos (kx)

has all coefficients in {−1, 0, 1} (and one 2) and only 2 roots.
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Chowla Cosine Problem

Let A ⊂ N be a set of n integers. Does

f (x) =
∑
a∈A

cos (ax) have to be very negative somewhere?

Example. A = {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 18}

1 2 3 4 5 6

5

10

Bourgain, Ruzsa, Borwein: min ≤ −c · ec
√
log n
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Hardy-Littlewood Maximal Function

Let f ∈ L1(R). Everybody knows the Hardy-Littlewood Maximal
Function

(Mf )(x) = sup
r>0

1

2r

∫ x+r

x−r
f (y)dy .

Fairly Natural Question

What are the maximal radii? What can be said?
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r
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This means the optimal radii r(x) function is

r(x) =
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0 if sin (x) ≥ 0

4.49341 . . . if sin (x) < 0

There are only two maximal radii that show up!
This actually tells you a little bit more: when computing integrals one of

{0, 4.493 . . . } gives you the maximal average and the other gives you the

minimal average
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Theorem (S, Studia Mathematica, 2014)

Suppose f ∈ Cα(R) is periodic and α > 1/2. If the function Ax

given by

(Ax f )(r) =
1

2r

∫ x+r

x−r
f (y)dy

has a critical point in r = γ for all x ∈ R,

then

f (x) = a+ b sin (cx + d).

There is a funny interpretation in terms of delay differential
equations. Suppose f ∈ C 1 and

0 =
∂

∂r

1

2r

∫ x+r

x−r
f (y)dy

∣∣
r=γ

,

then f ′(x + γ)− 1
γ f (x + γ) = −f ′(x − γ)− 1

γ f (x − γ).
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Idea behind the proof

When expanding the function into Fourier series, the condition

0 =
∂

∂r

1

2r

∫ x+r

x−r
f (y)dy

∣∣
r=γ

becomes

0 =
∞∑
k=1

γk cos(γk)− sin(γk)

γ2k
(ak sin (kx) + bk cos (kx))

forcing, for all k with a frequency contribution,

tan(γk) = γk .

Rest of the argument: fixed points of tangent tan (x) = x are
linearly independent over Q.
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Idea behind the proof

That argument is very algebraic, unlikely to be ‘robust’

Question
What can one say about the maximal radius function? Surely it
must, generically, assume many different values?

Concrete Question
Suppose f ∈ C∞ is periodic and f (x) ̸= a+ b sin (cx + d). Does
this imply that the maximal radius functions assumes infinitely
many values? Or at least 7 values? Or a set of values of Hausdorff
dimension at least?



Idea behind the proof

That argument is very algebraic, unlikely to be ‘robust’

Question
What can one say about the maximal radius function? Surely it
must, generically, assume many different values?

Concrete Question
Suppose f ∈ C∞ is periodic and f (x) ̸= a+ b sin (cx + d). Does
this imply that the maximal radius functions assumes infinitely
many values? Or at least 7 values? Or a set of values of Hausdorff
dimension at least?



Idea behind the proof

That argument is very algebraic, unlikely to be ‘robust’

Question
What can one say about the maximal radius function? Surely it
must, generically, assume many different values?

Concrete Question
Suppose f ∈ C∞ is periodic and f (x) ̸= a+ b sin (cx + d). Does
this imply that the maximal radius functions assumes infinitely
many values?

Or at least 7 values? Or a set of values of Hausdorff
dimension at least?



Idea behind the proof

That argument is very algebraic, unlikely to be ‘robust’

Question
What can one say about the maximal radius function? Surely it
must, generically, assume many different values?

Concrete Question
Suppose f ∈ C∞ is periodic and f (x) ̸= a+ b sin (cx + d). Does
this imply that the maximal radius functions assumes infinitely
many values? Or at least 7 values?

Or a set of values of Hausdorff
dimension at least?



Idea behind the proof

That argument is very algebraic, unlikely to be ‘robust’

Question
What can one say about the maximal radius function? Surely it
must, generically, assume many different values?

Concrete Question
Suppose f ∈ C∞ is periodic and f (x) ̸= a+ b sin (cx + d). Does
this imply that the maximal radius functions assumes infinitely
many values? Or at least 7 values? Or a set of values of Hausdorff
dimension at least?



Very few prior results about the basic structure of this function.
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2018 and F. Temur, The frequency function and its connections to the
Lebesgue points and the Hardy-Littlewood maximal function, Turkish Journal
of Mathematics 2019
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Sums of two squares

Integers that can be written as the sum of two squares

0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, . . .

Landau (1908) showed that

# {n ≤ x : n sum of two squares} = (K + o(1))
x√
log x

.

This shows that the average gap in the sequence around size ∼ n
is of order ∼

√
log n. How large can the gap be?
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The sequence of sums of two squares (an)
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The sequence of gaps (an+1 − an)
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The sequence of rescaled gaps (an+1 − an)/ log an
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Ram Bambah
(1925 – 26 May 2025)

Theorem (Bambah-Chowla, ’47)

Every interval

(n, n +
√
8n1/4 + 2)

contains an integer that is a sum of
two squares.

Proof is very simple. Take the largest square smaller than n and
then the smallest that gets you just above n.

n ≤
⌊√

n
⌋2

+

⌈√
n −

⌊√
n
⌋2⌉2

< n +
√
8n1/4 + 1.

Never been improved, not even the
√
8.



Ram Bambah
(1925 – 26 May 2025)

Theorem (Bambah-Chowla, ’47)

Every interval

(n, n +
√
8n1/4 + 2)

contains an integer that is a sum of
two squares.

Proof is very simple. Take the largest square smaller than n and
then the smallest that gets you just above n.

n ≤
⌊√

n
⌋2

+

⌈√
n −

⌊√
n
⌋2⌉2

< n +
√
8n1/4 + 1.

Never been improved, not even the
√
8.



Ram Bambah
(1925 – 26 May 2025)

Theorem (Bambah-Chowla, ’47)

Every interval

(n, n +
√
8n1/4 + 2)

contains an integer that is a sum of
two squares.

Proof is very simple. Take the largest square smaller than n and
then the smallest that gets you just above n.

n ≤
⌊√

n
⌋2

+

⌈√
n −

⌊√
n
⌋2⌉2

< n +
√
8n1/4 + 1.

Never been improved, not even the
√
8.



Ram Bambah
(1925 – 26 May 2025)

Theorem (Bambah-Chowla, ’47)

Every interval

(n, n +
√
8n1/4 + 2)

contains an integer that is a sum of
two squares.

Proof is very simple. Take the largest square smaller than n and
then the smallest that gets you just above n.

n ≤
⌊√

n
⌋2

+

⌈√
n −

⌊√
n
⌋2⌉2

< n +
√
8n1/4 + 1.

Never been improved, not even the
√
8.



Every ‘wide’ annulus contains lattice points. Lattice points and
circles, the Poisson Summation Formula....



Cosine Sign Correlation

The problem started back in 2015 as follows (Fourier Analysis →
Hermite functions → eigenfunctions of −∆+ x2).

D. Oliveira e Silva (IST Lisboa) Felipe Gonçalves (UT Austin)
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Motivation: Letter Einstein → Born, March 3 1947

[...] that physics should represent
reality in time and space, without
spooky action at a distance.



Harmonic Oscillator

The eigenfunctions

(−∆+ x2)ϕk = λkϕk

are Hermite functions.



Harmonic Oscillator

Strange fact. The signs of ϕk(1) and ϕk(5) are not independent,
they are positively correlated.

‘Quantum particles located at
x = 1 and x = 5 talk to each other’. This can be made rigorous by
using asymptotic expansion of Hermite functions (WKB for
physicists) which reduces this to a problem involving only cosines.
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Cosine Sign Correlation

Lemma (Gonçalves, Oliveira e Silva, S, J. Spectral Theory ’19)

For any integers a < b, we have

1

2π
|{x ∈ [0, 2π] : sign(cos(ax)) = sign(cos(bx))}| ≥ 1

3

with equality if and only if b = 3a.

1 2 3 4 5 6
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0.5
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There is some vague form of ‘compactness’.

If a and b are large
and ‘random’, then their signs should be ‘uncorrelated’.
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Big Question

Given a1, a2, . . . , an ∈ N and consider the functions

cos (a1x), cos (a2x), . . . , cos (anx) on [0, 2π].

Consider set S ⊆ [0, 2π] where all n functions have the same sign.
The set S is non-empty (because cos (0) = 1). How small can it be
(as a function of n)?
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Let us denote the answer by F (n). We know F (2) = 1/3.

Theorem (Dou, Goh, Liu, Legate, Pettigrew, JFAA 2022)

F (3) =
1

9

with worst case cos (x), cos (3x), cos (9x).
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Idea behind proof

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

cos (ax), cos (bx), cos (cx) and a < b < c .

If c ≫ b, then

area with same sign(a, b, c) ∼ 1

2
area with same sign(a, b) ≥ 1

6
.

Likewise if a ≪ b. Then lots of elementary Fourier Analysis and
case distinctions, lots of checking of special cases. No ‘clean’ proof
and no proof that would generalize to n = 4.
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F (2) =
1

3
F (3) =

1

9

Theorem (Dou, Goh, Liu, Legate, Pettigrew, JFAA 2022)

F (n) ≤ 1

3n−1

by taking powers of 3

but

F (4) ≤ 1

33
<

1

27

by taking 1, 3, 11, 33 and

F (5) ≤ 1

105
<

1

81

by taking 1, 3, 11, 35, 105. One question I had was whether
F (n) ≥ C−n and this was recently (last week!) resolved.
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Theorem (Lars Becker)

We have

F (n) ≥ 1

4n
.

The measure of the set where all cosines are positive is given by∫ 1

0

n∏
k=1

1[−1/4,1/4](akx).

Suppose that ϕ : T → R satisfies ϕ̂ ≥ 0 and ϕ ≤ 1[−1/4,1/4]. Then,
taking a Fourier transform,∫ 1

0

n∏
k=1

1[−1/4,1/4](akx) ≥
∫ 1

0

n∏
k=1

ϕ(akx) ≥ ϕ(0)n.

Optimal choice of ϕ is given by

ϕ = 4 · 1[−1/8,1/8] ∗ 1[−1/8,1/8].
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A Maximal Geodesic Problem

If we try to understand the behavior of signs of sin (ax) and
sin (bx), then one way to do is to integrate a function attaining the
values ±1 and integrate that over a closed geodesic.

+1 −1

−1 +1

Simple Idea. If the geodesic is very long, then it’s probably also
fairly uniformly distributed and the average value of the function is
probably pretty close to the mean value. Extremal geodesics
corresponding to extreme values have to be short.
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Theorem (S, Bull. Aust. Math. Soc, 2018)

Let f : T2 → R be at least s ≥ 2 times differentiable and have
mean value 0. Then

sup
γ closed geodesic

1

|γ|

∣∣∣∣∫
γ
f dH1

∣∣∣∣ ,

is attained by a closed geodesic γ : S1 → T2 with length

|γ|s ≲s

(
max
|α|=s

∥∂αf ∥L1(T2)

)
∥∇f ∥L2∥f ∥

−2
L2

.

▶ Open problem. The natural scaling is perhaps

|γ|s ≲s

(
max
|α|=s

∥∂αf ∥L1(T2)

)
∥f ∥−1

L2
.

▶ Open problem. Higher dimensions. Groups?
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Directional Poincaré

For any function f : T2 → R with mean value 0, we have

∥∇f ∥2L2(T) ≥ ∥f ∥2L2(T)

and the proof is easy (take a Fourier transform).

∥f ∥2L2(T) =
∑
k∈Z

|ak |2

∥∇f ∥2L2(T) =
∑
k∈Z

∥k∥2|ak |2

Only problem when k = 0 (excluded), extremizers and
near-extremizers have to be low-frequency.
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Directional Poincaré

Directional Poincaré (S, Arkiv för Matematik, 2015)

One can replace the gradient by a directional derivative

∥∇f ∥L2(T)

∥∥∥∥∥∂f∂x +
1 +

√
5

2

∂f

∂y

∥∥∥∥∥
L2(T)

≥ c∥f ∥2L2(T).

Sharp up to constant at every frequency scale. Take
fn(x , y) = sin(Fn+1x − Fny) with Fn being the n−th Fibonacci
number. Then the left-hand side becomes

LHS =

√
F 2
n+1

F 2
n

+ 1

∣∣∣∣∣Fn+1

Fn
− 1 +

√
5

2

∣∣∣∣∣F 2
n · ∥fn∥2

and that expression converges to 1/
√
5.
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∥∇f ∥L2(T)

∥∥∥∥∥∂f∂x +
1 +

√
5

2

∂f
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L2(T)

≥ c∥f ∥2L2(T).

1. Statement is false if golden ratio is replaced by e.

2. Number needs to be badly approximable.

3. Version in Td exists as well.

4. Proof is actually quite easy. (Too easy).
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Directional Poincaré

Open Problem. Is there a general version of this statement?

Suppose (M, g) is a nice compact manifold and f : M → R has
mean value 0. Then

∥∇f ∥L2(M) ≥ c∥f ∥L2(M)

and the proof is equally simple (really the same). When is there a
vector field Y on M such that for some δ, c > 0

∥∇f ∥1−δ
L2(M)

· ∥ ⟨∇f ,Y ⟩ ∥δ ≥ c∥f ∥L2(M)?

Potential problem when Y vanishes in a point but exploiting the
problem would require lots of concentration which should again be
fine. δ probably related to ‘mixing properties of the induced flow’.
Probably δ ≤ 1/dim(M) and the torus case is extremal ?
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Open Problem. Is there a general version of this statement?
Suppose (M, g) is a nice compact manifold and f : M → R has
mean value 0. Then

∥∇f ∥L2(M) ≥ c∥f ∥L2(M)

and the proof is equally simple (really the same). When is there a
vector field Y on M such that for some δ, c > 0

∥∇f ∥1−δ
L2(M)

· ∥ ⟨∇f ,Y ⟩ ∥δ ≥ c∥f ∥L2(M)?

Potential problem when Y vanishes in a point but exploiting the
problem would require lots of concentration which should again be
fine.

δ probably related to ‘mixing properties of the induced flow’.
Probably δ ≤ 1/dim(M) and the torus case is extremal ?



Directional Poincaré
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Hadamard (1893)

Given a determinant [...] with the assumption that the elements
are less in absolute value than some known quantity A, we wish to
determine a limit that the modulus of ∆ does not exceed.



Hadamard’s Inequality (1893)

If A ∈ Rn×n has all entries bounded, |Aij | ≤ 1, then

|det(A)| ≤ nn/2.

Proof.
Determinant is the volume of the parallelepiped. The length of
each of the sides is ≤

√
n. If we Gram-Schmidt the matrix, the

sides can only get shorter.

Cases of equality require that each entry is ±1 and that the
rows/columns are orthogonal.
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A matrix A ∈ Rn×n is Hadamard if its entries are ±1 and the
rows/columns are orthogonal.

Small examples are

H1 =
(
1
)

H2 =

(
1 1
1 −1

)
H4 =


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


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A large example (64× 64) is

1 20 40 64

1

20

40

64

1 20 40 64

1

20

40

64



Sylvester Matrices?

When Hadamard talks about Hadamard matrices, he immediately
refers to work of James Sylvester (1867)



Sylvester (1867)



Sylvester’s Tensor Construction (1867)

If A ∈ {−1, 1}n×n satisfies det(A) = nn/2, then

B =

(
A A
A −A

)
satisfies B ∈ {−1, 1}2n×2n and det(B) = (2n)(2n)/2.

In particular, n × n Hadamard exist whenever n is a power of 2.
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Back to Hadamard

Can one find such determinants for other values of n?

Theorem (Hadamard)

If A ∈ Rn×n is a Hadamard matrix and n ≥ 4, then 4 divides n.

Proof.
Simple. We can always multiply each column by ±1. We can thus
assume the first row is only 1’s. This forces the second row to have
the same number of +1 as −1 (and thus n is even). We can now
reorder the columns so that the first n/2 entries in the second row
are +1. Let us denote the number of +1 among the first n/2
entries in the third row by a. Then n/2− a entries are −1 and

a− (n/2− a)− (n/2− a) + a = 0 or 4a = n.
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Signed Orthogonality

A Hadamard matrix H ∈ Rn×n is a matrix all of whose entries are
±1 and

∀ x ∈ Rn ∥Hx∥ =
√
n∥x∥.

Amazing Theorem (Dong-Rudelson, 2023)

There exists C > 0 such that for all n ∈ N there exists a matrix
H ∈ {−1, 1}n×n such that

∀ x ∈ Rn

√
n

C
∥x∥ ≤ ∥Hx∥ ≤ C

√
n∥x∥.
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Proof

▶ Using the Fourier matrix

F =
1√
n

(
e−2πimk/n

)n−1

m,k=0

every circulant matrix can be written as A = F−1DF .

▶ Eigenvalues λj given by, where 0 ≤ j ≤ n − 1,

λj = a0+a1w
j+a2w

2j+· · ·+an−1w
(n−1)j with w = exp(2πi/n)

▶ Introducing the polynomial

p(z) = a0 + a1z + a2z
2 + · · ·+ an−1z

n−1

we see that the eigenvalues show up at the roots of unity.
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▶ Introducing the polynomial

p(z) = a0 + a1z + a2z
2 + · · ·+ an−1z

n−1

max∥x∥=1 ∥Ax∥
min∥x∥=1 ∥Ax∥

=
max0≤j≤n |λj |
min0≤j≤n |λj |

=
maxzn=1 |p(z)|
minzn=1 |p(z)|

≤
max|z|=1 |p(z)|
min|z|=1 |p(z)|

.

▶ The question is thus: can we find a polynomial p(z) with
coefficients ±1 such that

max|z|=1 |p(z)|
min|z|=1 |p(z)|

≤ C?
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Signed Orthogonality

Question
Are there any nice good explicit constructions of approximate
Hadamard matrices? (Circulant or not circulant).

1. The circulant problem should be slightly easier than finding
flat Littlewood polynomials (flat only at roots of unity).

2. The non-circulant problem should be much easier.

3. Dong-Rudelson can probably be turned into a proof (every
sufficiently large integer is the sum of 4 primes that are
roughly the same size and then gluing together of Paley
matrices). Control on the constant?

4. Is there a nice construction?
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Signed Orthogonality

Failed idea: let us take the matrix(
cos

(
2π

n
ij

))n

i ,j=1

and replace each entry by its sign

A =

(
sign

(
cos

(
2π

n
ij

)))n

i ,j=1

.

If ∥Ax∥ ∼
√
n∥x∥ then

∥Ax∥2 = ⟨Ax ,Ax⟩ =
〈
x ,ATAx

〉
and ATA should be close to some rescaled identity matrix.
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Signed Orthogonality

Large entries of ATA when n = 100.
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Large entries of ATA when n = 300.



Signed Orthogonality

Large entries of ATA when n = 500.



Signed Orthogonality

Theorem (François Clément and S, 2025)

Let n be prime and 0 ̸= a, b ∈ Fn. Then

Σa,b =

∣∣∣∣∣
n∑

k=1

sign

(
cos

(
2π

n
ak

))
sign

(
cos

(
2π

n
bk

))∣∣∣∣∣
satisfies,

using ∥x∥ to denote distance from 1,

Σa,b =
n

∥a−1b∥
1[∥a−1b∥ is odd] +O(∥a−1b∥).

Several other more technical results.
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Signed Orthogonality

This phenomenon is more general: take the Legendre polyomials

pn(x) =
1

2nn!

dn

dxn
(
x2 − 1

)n
.

These polynomials are mutually orthogonal on [−1, 1] with∫ 1

−1
pm(x)pn(x)dx =

2

2n + 1
δmn.

Consider

Qmn =

∣∣∣∣∫ 1

−1
sign(pm(x))sign(pn(x))dx

∣∣∣∣ .
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Signed Orthogonality

Qmn =

∣∣∣∣∫ 1

−1
sign(pm(x))sign(pn(x))dx

∣∣∣∣

Probably generally true for orthogonal polynomials on the
real line...?



Kakeya on the Sphere

Here’s a cheap Kakeya-type statement in R2.

Given ℓ1, . . . , ℓn lines
(no two parallel), then their 1/n−neighborhoods T1, . . . ,Tn satisfy

n∑
i,j=1
i ̸=j

|Ti ∩ Tj | ≳ log (n).

Trivial bound is ≳ 1. What happens on S2?
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Kakeya on the Sphere



Given ℓ1, . . . , ℓn great circles, then their 1/n−neighborhoods
C1, . . . ,Cn satisfy

n∑
i,j=1
i ̸=j

|Ci ∩ Cj | ≳ 1

and this is best possible4.

Nontrivial sharp bound

n∑
i,j=1
i ̸=j

|Ci ∩ Cj |2 ≳
log n

n2
.

4S, Well-Distributed Great Circles on S2, Disc. Comp. Geometry, 2018.
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n∑
i,j=1
i ̸=j

|Ci ∩ Cj | ≳ 1
n∑

i,j=1
i ̸=j

|Ci ∩ Cj |2 ≳
log n

n2

Idea behind proof. Identify a great circle with ‘north and south
pole’.

The area of intersection is

|Ci ∩ Cj | ∼
1

n2
max
±

1

∥pi ± pj∥
.

This is reminiscent of the Riesz energy

n∑
i,j=1
i ̸=j

1

∥xi − xj∥
→ min

and can be seen as Riesz energy on the Grassmannian. Taking the
width of 0 converges to(

1− ⟨pi , pj⟩2
)−s/2

independently (Chen-Hardin-Saff, 2020).
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Kakeya on the Sphere

Question
We have (from Hölder and p = 1) that for all p ≥ 1,∥∥∥∥∥

n∑
i=1

χCi

∥∥∥∥∥
Lp(S2)

≳ 1.

Sharp for 1 ≤ p ≤ 2. Probably not when p > 2 ?
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Speaking of curvature?

The curvature of S2 increases transversality, which decreases the area of intersection.

?
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The Motzkin-Schmidt Problem

(Peter Varju, Remembering Jean Bourgain, AMS Notices 2021)



The Motzkin-Schmidt Problem

A Trivial Statement
Given n points in [0, 1]2, there exists exists a line ℓ ∈ R2 whose
3/n−neighborhood contains at least 3 points.

The Motzkin-Schmidt Problem
Is this true with a o(1/n) neighborhood?
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A quick one: number of critical points

Trivial
Let f : T → R be smooth. Then

(#number of critical points) · ∥f ∥L∞(T) ≳ ∥f ′∥L1(T).

Sharp up to constants: f (x) = sin (kx)

Theorem (S, Monatshefte Math, 2021)

Let f : T → R be smooth. Then

(#number of critical points) · ∥f ∥L2(T) ≳
∥f ′∥2L1(T)
∥f ′∥L∞(T)

.

Open problem. Is there a one-parameter family? Interpolation?
Higher dimensions? Or it’s just an accident?
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Spooky Action at a Distance

When doing Fourier Analysis, there is no real difference between
sin (x) and − sin (x), the sign cancels

f =
∑
k∈N

⟨f , ϕk⟩ϕk .

Motivated by some question on Laplacian eigenfunctions5, we can
flip all the signs so that the functions are all positive in x

f (x , y) =
n∑

k=1

sign (ϕk(x))ϕk(y).

5S, Quantum entanglement and the growth of Laplacian eigenfunctions.
Communications in Partial Differential Equations, 48 (2023), 511-541.
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The functions sin (kx) on [0, π].
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Summed sines (sign so that positive in x = 2), 10 terms.
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Summed sines (sign so that positive in x = 2), 50 terms.



0.5 1.0 1.5 2.0 2.5 3.0

-50

50

100

150

Summed sines (sign so that positive in x = 2), 250 terms.
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Opaque Sets and Barriers

Opaque Square (Mazurkiewicz 1916, Bagemihl 1959)

Consider a one-dimensional set in R2 such that every line that
intersects [0, 1]2 also intersects the set.

How short can it be?

Length = 4
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Consider a one-dimensional set in R2 such that every line that
intersects [0, 1]2 also intersects the set. How short can it be?
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Length ∼ 2.639

This is probably the minimizer; people are somewhat amazed by
this because it is not connected.

Very little progress in the last 30
years.
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This is interesting not just for [0, 1]2. The state of the art for the
unit disk is due to Makai and Day (independently, ∼1980).
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Lower Bound (Jones 1962)

For any convex Ω ⊂ R2, then length is at least half the boundary.

Proof is actually quite simple: Crofton Formula, Integration.

Proof is fairly simple (next slide) but has never been improved.
One problem is that the result, as stated, is optimal.
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Proof of the Jones bound

Idea: we project the domain (and the set) uniformly along all
angles.

For the domain, this gives us, on average, the mean-width.

Theorem (Cauchy)

The mean-width of a convex domain Ω ⊂ R2 is |Ω|/π.
The mean-width of a line segment of length ℓ is

1

2π

∫ 2π

0
ℓ| cos (α)|dα =

2

π
ℓ.
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The argument is only sharp if each line intersects the opaque set in
exactly one point.

This is clearly not the case.

Hard to get improvements from this.

Theorem (Kawamura-Moriyama-Otachi-Pach, 2019)

An opaque set in the square has length at least 2.00002.
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Near-Extremizers of Jones bound

Given line segments in the plane, can associate measure on [0, 2π].

0 π/2 π 3π/2 2π

Theorem (Near Extremizers of Jones look like boundary, S)

Let Ω ⊂ R2 be a bounded convex domain, let O be an opaque set
of length L and let µO and µ∂Ω be the associated measures.

Then

∥µO − µ∂Ω∥Ḣ−2(T) ≤
L1/4√

2
·
(
L− |∂Ω|)

2

)3/4

.
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The Averaging Problem

We are given a function f ∈ C∞
c (R) and we want to compute a

local average at a point x .

This should be somehow representative
of the average value of f at the point x at scale ∼ λ (also given).

The Averaging Problem

What is the ‘best’ average?

Note that this question comes in two parts

▶ identify what precisely you mean by ‘best’

▶ then identify the best averages.

This is an example of the axiomatic method. First, you define the
axioms and then you solve problems. It would be nice to have
dozens of characterizations of optimality under different
assumptions. Cooperative Game Theory has something like that
(sharing cake) and so does Computer Vision (smoothing a picture).
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Some Axioms

Here’s what I want my averaging function to do.

1. Translation invariance

Av[f (x + c)] = Av(f )[x + c]

2. Constants are being mapped to constants: for c ∈ R

Av[c](x) = c

3. Linearity
Av(f + g) = Av(f ) + Av(g).

This allows us to make the question more specific: suppose

[Av ](f )(x) = (f ∗ g)(x) =
∫
R
f (x + y)g(y)dy .

What is the best g?
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An example: we want understand local averages of

2 4 6 8 10

-0.5

0.5



Averaging with characteristic functions

2 4 6 8 10

-0.6

-0.4

-0.2

0.2

0.4



Averaging with exponential distribution
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So which one is the right one?
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[Av(f )](x) = (f ∗ g)(x) =
∫
R
f (x + y)g(y)dy .

I want to have the ‘smoothest convolution’. I think this is a
fascinating problem.

What precisely it means, is up to you.

Axiom. I want a function g so that∫
R
g(x)dx = 1 and

∫
R
g(x)|x |α dx = λα

and that the inequality

∀ f ∈ L2(R)
∥∥∥∥ d

dx
(f ∗ g)

∥∥∥∥
L2(R)

≤ cg∥f ∥L2(R)

has the smallest possible value of cg . The value of cg cannot be
arbitrarily small.
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The Problem

sup
f ∈L2

∥∥ d
dx (f ∗ g)

∥∥
L2(R)

∥f ∥L2(R)
= sup

ξ
|ξ| · |ĝ(ξ)| → min

subject to conditions gives uncertainty principle (next slide).

Note that:

1. Other differential operators are conceivable, we’ll get to d2

dx2
.

2. Other function spaces are conceivable. Lp?

3. Other ways of fixing the scale are conceivable.

But generally, all these questions are open.
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Some New Uncertainty Principles

Theorem (S, Math Res Lett, 2021)

For α > 0 and β > n/2, there exists cα,β,n > 0 such that for all
u ∈ L1(Rn)

∥|ξ|β · û∥αL∞(Rn) · ∥|x |
α · u∥β

L1(Rn)
≥ cα,β,n∥u∥α+β

L1(Rn)
.

▶ n = 1 and β = 1 corresponds exactly to the problem above.

∥|ξ| · û∥αL∞(R) · ∥|x |
α · u∥L1(R) ≥ cα∥u∥α+1

L1(R).

▶ If we additionally fix the variance, i.e. α = 2, then

∥|ξ| · û∥2L∞(R) · ∥|x |
2 · u∥L1(R) ≥ c2,1,1∥u∥3L1(R).
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∥|ξ| · û∥αL∞(R) · ∥|x |
α · u∥L1(R) ≥ cα∥u∥α+1

L1(R).

▶ If we additionally fix the variance, i.e. α = 2, then

∥|ξ| · û∥2L∞(R) · ∥|x |
2 · u∥L1(R) ≥ c2,1,1∥u∥3L1(R).



Extremizers
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Open Problem

Is the classical simple averaging

Av(f )(x) =
1

λ

∫ λ/2

−λ/2
f (x + y)dy

an extremizer of the uncertainty principle

∥|ξ| · û∥αL∞(R) · ∥|x |
α · u∥L1(R) ≥ cα∥u∥α+1

L1(R)?

Problem (Maybe classical averaging is not that bad?)

Let α ≥ 2. Is the optimal constant given by the characteristic
function u(x) = χ[−1/2,1/2]?

A very partial result (S.)

Locally optimal when α ∈ {2, 3, 4, 5, 6}.

Theorem (Cho, Park)

Locally optimal when α ≥ 2.
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∥|ξ| · û∥αL∞(R) · ∥|x |
α · u∥L1(R) ≥ cα∥u∥α+1

L1(R)?

Problem (Maybe classical averaging is not that bad?)

Let α ≥ 2. Is the optimal constant given by the characteristic
function u(x) = χ[−1/2,1/2]?

A very partial result (S.)

Locally optimal when α ∈ {2, 3, 4, 5, 6}.

Theorem (Cho, Park)

Locally optimal when α ≥ 2.



Open Problem

Is the classical simple averaging

Av(f )(x) =
1

λ

∫ λ/2

−λ/2
f (x + y)dy

an extremizer of the uncertainty principle
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The discrete problem

▶ We want to average functions f : Z → R.

▶ We do this by convolving with symmetric functions

g : {−n,−n + 1, . . . , n − 1, n} → R

(so scaling is automatically built into the problem) that are
normalized to

n∑
k=−n

g(k) = 1.

▶ We want the smoothest convolution, the one for which

∥∇(f ∗ g)∥ℓ2(Z) ≤ cg∥f ∥ℓ2(Z)

has the smallest constant cg . Here (∇f )(n) = f (n+1)− f (n)
is the discrete derivative.
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The discrete problem

Theorem (Noah Kravitz and S, Bull. London Math Soc, 2021)

Let u : {−n, . . . , n} → R be a symmetric function with
normalization

∑n
k=−n u(k) = 1.

Then

sup
0̸=f ∈ℓ2(Z)

∥∇(f ∗ u)∥ℓ2(Z)
∥f ∥ℓ2

≥ 2

2n + 1
,

with equality if and only if u is the constant function

u(k) =
1

2n + 1
.

Note. This is the discrete analogue of the characteristic function
(like in the continuous case!)
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Theorem (Noah Kravitz and S, Bull. London Math Soc, 2021)

Let u : {−n, . . . , n} → R be a symmetric function with
normalization

∑n
k=−n u(k) = 1 and nonnegative Fourier

transform.

Then

sup
0 ̸=f ∈ℓ2(Z)

∥∆(f ∗ u)∥ℓ2(Z)
∥f ∥ℓ2

≥ 4

(n + 1)2
,

with equality if and only if u is the triangle function

u(k) =
n + 1− |k|
(n + 1)2

.

Sean Richardson can remove the requirement f̂ (ξ) ≥ 0.
Open problem. For ℓ = 3, 4, . . .

sup
0 ̸=f ∈ℓ2(Z)

∥∆ℓ(f ∗ u)∥ℓ2(Z)
∥f ∥ℓ2

≥?
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Sketch of the Proof

Fourier Analysis reduces everything to trigonometric polynomials.

Symmetry reduces everything to real-valued trigonometric
polynomials. x = cos θ reduces everything to the unit interval, we
end up with problems for real-valued polynomials.

Theorem (Noah Kravitz and S, 2020)

Let p(x) be a polynomial of degree at most n that is nonnegative
on [−1, 1] and satisfies p(1) = 1. Then

max
x∈[−1,1]

(1− x) · p(x) ≥ 2

(n + 1)2
,

with equality if and only if

p(x) =
1

(n + 1)2
· 1− Tn+1(x)

1− x
,

where Tn is the n−th Chebychev polynomial.
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Let p(x) be a polynomial of degree at most n that is nonnegative
on [−1, 1] and satisfies p(1) = 1.

Then

max
x∈[−1,1]

(1− x) · p(x) ≥ 2

(n + 1)2
,

with equality if (n = 8)
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For the Laplacian, there is an algebraic miracle that seems difficult
to emulate in general.

Theorem (Noah Kravitz and S, 2020)

Let p(x) be a polynomial of degree at most n that satisfies
p(1) = 1. Then

max
x∈[−1,1]

(1− x) · p(x)2 ≥ 2

(2n + 1)2
,

with equality if and only if

p(x) =
1

2n + 1

(
1 + 2

n∑
k=1

Tk(x)

)
.
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Kozma-Oravecz Inequalities

The function f : Td → R given by

f (x) = cos(2π ⟨x , k⟩)

has a root in each ball of size ∼ 1/∥k∥.

Sums?

Theorem (Taikov, 1965)

The function f : T → R given by

f (x) =
A+B∑
k=A

ak cos (kx)

has a root in every interval of length (B + 1)/(2A+ B).
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Theorem (Taikov, 1965)
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ak cos (kx)

has a root in every interval of length (B + 1)/(2A+ B).



Theorem (Kozma-Oravecz, 2003)

The function f : T → R given by f (x) =
∑

k∈S ak cos (kx) has a
root in each ball of radius

r(f ) =
1

4

∑
k∈S

1

∥k∥
.

Theorem (S, Journal d’Analyse Mathematique, 2023)

The function f : T → R given by f (x) =
∑

k∈S ak cos (kx) has a
root in each ball of radius

r(f ) = d3/2
∑

λ∈{∥k∥:k∈S}

1

λ
.
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The proof is simple and based on the convolution identity and if

f (x) =
∑
k∈S

ak exp (2πi ⟨x , k⟩) ,

then
(f ∗ hδ∗)(x) =

∑
k∈S

ak · ĥδ∗(k) · exp (2πi ⟨x , k⟩) .

f > 0

f ∗ hδ > 0

If f > 0 on a ball of radius r and we convolve f with a positive function

supported on a ball of radius δ∗, then the convolution is positive on a ball of

radius r − δ∗.
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Theorem (S, Journal d’Analyse Mathematique, 2023)

The function f : T → R given by f (x) =
∑

k∈S ak cos (kx) has a
root in each ball of radius

r(f ) = d3/2
∑

λ∈{∥k∥:k∈S}

1

λ
.

Problem. I don’t see any indication that the correct scaling should
be the sum of the inverse frequencies (inverse frequencies
themselves are okay). Maybe something like ∑

λ∈{∥k∥:k∈S}

1

λ2

1/2

?



Thank you!


