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The goal of this talk is to tell you about a nice way of
(approximately) solving linear systems of equations. It can be
interpreted as Stochastic Gradient Descent applied to a classical
Least Squares problem – and it can be analyzed rigorously!

I found it to be mathematically rich and naturally leading to
many(!) open problems! (Some are mentioned in this talk.)
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Throughout this talk, we will try to solve Ax = b where A ∈ Rn×n,
where A is invertible.

We use ai ∈ Rn to denote the i−th row, so
we can also write 

a1
a2
. . .
an

 x = b

or
∀ 1 ≤ i ≤ n : 〈ai , x〉 = bi .
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Linear Systems ≡ Intersection of Hyperplanes

∀ 1 ≤ i ≤ n : 〈ai , x〉 = bi

x



The Kaczmarz Method
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PhD in 1924 for Functional Equations
1930s: visit Hardy and Paley in Cambridge
1937: Approximate Solutions of Linear
Equations (3 pages)

His colleagues described him as ”tall and
skinny”, ”calm and quiet”, and a ”modest
man with rather moderate scientific ambi-
tions”. (MacTutor Math Biographies)
Circumstances of death in WW2 unclear.
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The Kaczmarz method

The method is remarkably simple: we want

∀ 1 ≤ i ≤ n : 〈ai , x〉 = bi .

Geometrically, we want to find the intersection of hyperplanes.
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The Kaczmarz method

x

xk
xk+1

xk+2

Project iteratively on the hyperplanes given by

〈ai , x〉 = bi .

Pythageorean Theorem implies that the distance to the solution
always decreases (unless you are already on that hyperplane).
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The Kaczmarz method

If we project xk onto the hyperplane given by the i−th equation
〈ai , x〉 = bi to obtain xk+1, then

xk+1 = xk +
bi − 〈ai , xk〉
‖ai‖2

ai .

I This is cheap: it’s an inner product! We do not even have to
load the full matrix into memory.

I This is thus useful for large matrices.
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Standard Kaczmarz. We cycle through the indices i and set

xk+1 = xk +
bi − 〈ai , xk〉
‖ai‖2

ai .

(The convergence of this method is geometrically obvious) – but
the convergence speed is not.

Random Kaczmarz. We pick a random equation i and set

xk+1 = xk +
bi − 〈ai , xk〉
‖ai‖2

ai .

I somehow behaves a little better

I used since the 1980s

I stochastic gradient descent for ‖Ax − b‖2 → min
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Theorem (Strohmer & Vershynin, 2007)

Pick the i−th equation with likelihood proportional to ‖ai‖2, then

E ‖xk − x‖22 ≤
(

1− σn(A)2

‖A‖2F

)k

‖x0 − x‖22.

I ‖A‖F is the Frobenius norm ‖A‖2F =
∑n

i ,j=1 a
2
ij .

I σn(A) is the smallest singular value of A.
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Sketch of the Proof

Strohmer & Vershynin’s argument is short and elegant (certainly
one of the reasons it has inspired a lot of subsequent work).

E
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‖A‖2F

∥∥∥∥A xk − x
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∥∥∥∥2
≥ 1
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‖A−1‖22
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3. A Refined Analysis

Here’s what I really wanted to know: what does xk − x do?
Looking at the picture, it should be sort of jumping around.

x

xk
xk+1

xk+2

But in numerical experiments, I didn’t see that.
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xk
xk+1

xk+2

Empirically, the (random) sequence of vectors

xk − x

‖xk − x‖

tends to mainly a linear combination of singular vectors with small
singular values.



Theorem (Small Singular Values Dominate, SIMAX 2021)

Let v` be a (right) singular vector of A associated to the singular
value σ`.

Then

E 〈xk − x , v`〉 =

(
1−

σ2`
‖A‖2F

)k

〈x0 − x , v`〉 .

I Different rate of contraction in different subspaces.

I The slowest rate of decay is given by the smallest singular
value σn. This recovers Strohmer-Vershynin.

I Open Problem: Only Expectation, what can one say about
the variance...? Or some other form of deviation from mean?
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This suggests that the method can be used to find the smallest
singular vector of a matrix:

solve the problem Ax = 0. Then
xk − x = xk converges to a linear combination of singular vectors
corresponding to small singular values.
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Figure: A sample evolution of ‖Axk‖/‖xk‖.
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4. Stuck between a rock and a hard place

You get trapped in the narrow regions and it’s hard to escape.
This seems strange because, after all, it is a random process and
you might end up on any hyperplane at any point in time.
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Stuck between a rock and a hard place

x

Theorem (Slowing down in Bad Regions, SIMAX 2021)

If xk 6= x and P(xk+1 = x) = 0, then

E
〈
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‖xk − x‖
,

xk+1 − x

‖xk+1 − x‖

〉2
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Once xk − x is mainly a linear combination of small singular
vectors, this quantity changes very little! We stay trapped!
Open Problem: What about variance?
Open Problem 2: How do we escape?
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E
〈
xk ,

xk+1

‖xk+1‖

〉2

=
m∑
i=1

‖ai‖2

‖A‖2
F

〈
xk ,

xk −
〈ai ,xk〉
‖ai‖2

ai

‖xk −
〈ai ,xk〉
‖ai‖2

ai‖

〉2

=
m∑
i=1

‖ai‖2

‖A‖2
F

〈
xk , xk −

〈ai ,xk〉
‖ai‖2

ai

〉2

‖xk −
〈ai ,xk〉
‖ai‖2

ai‖2

=
m∑
i=1

‖ai‖2

‖A‖2
F

〈
xk , xk −

〈ai ,xk〉
‖ai‖2

ai

〉2

‖xk −
〈ai ,xk〉
‖ai‖2

ai‖2
=

m∑
i=1

‖ai‖2

‖A‖2
F

‖xk −
〈ai ,xk〉
‖ai‖2

ai‖4

‖xk −
〈ai ,xk〉
‖ai‖2

ai‖2

=
m∑
i=1

‖ai‖2

‖A‖2
F

∥∥∥∥∥xk − 〈ai , xk〉‖ai‖
ai

‖ai‖

∥∥∥∥∥
2

=
m∑
i=1

‖ai‖2

‖A‖2
F

(
1−
〈ai , xk〉2

‖ai‖2

)

=
1

‖A‖2
F

m∑
i=1

(
‖ai‖

2 − 〈ai , xk〉
2
)

= 1−
1

‖A‖2
F

m∑
i=1

〈ai , xk〉
2 = 1−

‖Axk‖2

‖A‖2
F

.
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5. Changing the likelihoods

New idea: maybe we shouldn’t pick the likelihoods randomly.

We
want

∀ 1 ≤ i ≤ n : 〈ai , x〉 = bi

so maybe we should pick equations where |〈ai , x〉 − bi | is large?

This is known as the maximum residual method. It is known since
(at least) the 1990s that this is faster (Feichtinger, Cenker, Mayer,
Steier and Strohmer, 1992), (Griebel and Oswald, 2012), ...
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Proposed fix: choose the i−th equation with likelihood
proportional to

P(we choose equation i) =
|〈ai , xk〉 − b|p

‖Axk − b‖p`p
.

I for p = 0, every equation is picked with equal likelihood

I for p large, the large deviations are more likely to be picked

I in practice, no difference between p = 20 and p = 10100

I the method ‘converges’ to maximum residual as p →∞.
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Figure: ‖xk − x‖`2 for the Randomized Kaczmarz method (blue), for
p = 1 (orange), p = 2 (green) and p = 20 (red).



Theorem (Weighting is better, Math. Comp, 2021)

Let 0 < p <∞, let A be normalized to having the norm of each
row be ‖ai‖ = 1. Then

E ‖xk − x‖22 ≤

(
1− inf

x 6=0

‖Ax‖p+2
`p+2

‖Ax‖p`p‖x‖2`2

)k

‖x0 − x‖22.

This is at least the rate of Randomized Kaczmarz (p = 0):

inf
x 6=0

‖Ax‖p+2
`p+2

‖Ax‖p`p‖x‖2`2
≥ σ2n
‖A‖2F

.

Open Problem. Is there any structure in xk − x?
Open Problem 2. The method is a priori specified: are there any
smarter ways of adapting dynamically along the flow?
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Reflection doesn’t get us any
closer to the solution but it does something else.
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We get that, again from Pythagoras,

‖xk − x‖ = ‖xk+1 − x‖.

The distance to the true solution stays exactly preserved!

The
formula stays simple

xk+1 = xk + 2
bi − 〈ai , xk〉
‖ai‖2

ai .
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This gives us a new approach to the problem.

I Start with some arbitrary x0 ∈ Rn.

I Generate a sequence of vectors in Rn via

xk+1 = xk + 2
bi − 〈ai , xk〉
‖ai‖2

ai .

You can pick the i any way you like.

I Do this for a while until you are happy. You end up with a set
{x0, . . . , xn} such that

‖xk − x‖ is constant.

They are all on a sphere around the true solution.

I Open Problem: Reconstruct a good approximation of the
center of a sphere from knowing many points on the sphere.
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One could certainly do exact reconstruction.

Suppose we have
x1, x2, . . . , xn+1 all on a sphere in Rn.

x1

xi

x12r

Figure: Thales’ Theorem guarantees 〈xi − x1, 2r〉 = ‖xi − x1‖2.

So we end up with another linear system for r .
Open Problem: Can this be used for ‘upgrading’ the quality of
the system? It seems that yes, maybe.
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Suppose we take the simple average

x =
1

m

m∑
k=1

xk .

Theorem (Applied Mathematics Quarterly, 2021)

If the i−th hyperplane is picked with likelihood proportional to
‖ai‖2, the arising random sequence of points (xk)∞k=1 satisfies

E

∥∥∥∥∥x − 1

m

m∑
k=1

xk

∥∥∥∥∥ ≤ 1 + ‖A‖F‖A−1‖√
m

· ‖x − x1‖.

So you need roughly m ∼ ‖A‖2F‖A−1‖2 to decrease by a fixed

factor. Same as Kaczmarz.
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Question. How to reconstruct a good approximation of the center
of a sphere from knowing many points on the sphere?

Concrete Question. You are given 100n points in Rn that lie on a
sphere. How do you approximate the center?

Simple Averaging already leads to something
as good as Random Kaczmarz!
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Flavor of the Proof.
I We can assume w.l.o.g. that x = 0 and that the sphere has

radius 1. What can we say about

E
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m

m∑
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xk

∥∥∥∥∥?

I Let us use R to denote the random reflection operator. Then
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k=1

xk =
1

m

m∑
k=1

Rkx0.
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The Flavor of the Proof

I ∥∥∥∥∥
m∑

k=1

Rkx0

∥∥∥∥∥
2

=
m∑

k,`=1

〈
Rkx0,R

`x0
〉

I So the relevant question is really, what can we say about

E
〈
Rkx0,R

`−k(Rkx0)
〉
.

A Decorrelation Lemma
We have, for any x ∈ Rn, and any k ∈ N,

∣∣∣E〈x ,Rkx
〉∣∣∣ ≤ (1− 2σ2n

‖A‖2F

)k

‖x‖2.

(Proof by Induction).



The Flavor of the Proof

I ∥∥∥∥∥
m∑

k=1

Rkx0

∥∥∥∥∥
2

=
m∑

k,`=1

〈
Rkx0,R

`x0
〉

I So the relevant question is really, what can we say about

E
〈
Rkx0,R

`−k(Rkx0)
〉
.

A Decorrelation Lemma
We have, for any x ∈ Rn, and any k ∈ N,

∣∣∣E〈x ,Rkx
〉∣∣∣ ≤ (1− 2σ2n

‖A‖2F

)k

‖x‖2.

(Proof by Induction).



The Flavor of the Proof

I ∥∥∥∥∥
m∑

k=1

Rkx0

∥∥∥∥∥
2

=
m∑

k,`=1

〈
Rkx0,R

`x0
〉

I So the relevant question is really, what can we say about

E
〈
Rkx0,R

`−k(Rkx0)
〉
.

A Decorrelation Lemma
We have, for any x ∈ Rn, and any k ∈ N,

∣∣∣E〈x ,Rkx
〉∣∣∣ ≤ (1− 2σ2n

‖A‖2F

)k

‖x‖2.

(Proof by Induction).



Summary

I The Kaczmarz method is a geometrically beautiful iterative
method for solving linear system.

I By replacing projection with reflection, we introduce a random
reflection process on the sphere that is pretty interesting.

I Given points on a sphere, how do you estimate the
location of the center of the sphere?

I Taking the average leads to a method that is as good as
Random Kaczmarz. Anything better leads to a better method.
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