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The goal is to now focus on convex sets Ω ⊂ R2 which are scaled
to have area 1.

From the previous inequality, we have∫
Ω
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but the hope would be that in n = 2 dimensions, more can be said.
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−∆φ = 1 in Ω

φ = 0 on ∂Ω.

We need to understand how large φ can be. The points where
‖∇φ‖ assumes its largest value are known as the fail points. Or as
points dangereux!

Les points dangereux sont donc, comme dans l’ellipse et le
rectangle, les points du contour les plus rapproches de l’axe
de torsion, ou les extremites des petits diametre. (Saint
Venant, 1856)
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Focusing on n = 2

People thought that this was very strange!

M. de St. Venant also calls attention to a conclusion from
his solutions which to many may be startling, that in the
simpler cases the places of greatest distortion are those
points of the boundary which are nearest to the axis [...]
and the places of least distortion those farthest from it.
(Thomson & Tait, Treatise on Natural Philosophy, 1867)
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Focusing on n = 2

Suppose Ω ⊂ R2 is a convex set and −∆u = 1 with Dirichlet
boundary conditions.

Theorem (Hoskins & S, 2019)

There exists 0.35 ≤ c < (2π)−1/2 ∼ 0.39 . . . such that

‖∇u‖L∞ ≤ c · |Ω|1/2.

The lower bound follows from an explicit construction that we
believe to be close to optimal. We’ll first discuss how we expect
extremizers to look like.
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Probabilistic Interpretation

φ is the expected lifetime of Brownian motion.

Polya’s Theorem

The maximal gradient is on the boundary.

What we therefore looking for

The domain Ω such that the average lifetime of Brownian motion
conditioned on starting close to the boundary is maximized.
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Thank you!


