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Eden Model (1961)



The Eden Model

M. Eden, A two-dimensional growth process, Proceedings of Fourth Berkeley
Symposium on Mathematics, Statistics, and Probability, 1961



The Eden Model



The Eden Model

Image: Manin, Roldán & Schweinhart, Topology and Local Geometry of the

Eden Model, Discrete & Computational Geometry 69, p. 771-799 (2023)
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Vold-Sutherland

Particles travel along random linear trajectories and stop the
moment they first hit the existing cluster.

Image: Paul Meakin, The Vold-Sutherland and Eden Models of Cluster Formation
Journal of Colloid and Interface Science, Vol. 96, No. 2, December 1983
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Image: Paul Meakin, The Vold-Sutherland and Eden Models of Cluster Formation
Journal of Colloid and Interface Science, Vol. 96, No. 2, December 1983



Diffusion-Limited Aggregation (DLA)

Idea: a particle travels by diffusion (a random walk) and stops the
moment it first touches the existing set of particles.



Witten-Sanders, 1981



Grebenkov-Beliaev, 2017
DLA is often considered on lattice Z2 vs. R2. There seems to be a
difference.
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wikipedia

Image: wikipedia



Image: Halsey, 2000



Image: Sanders, 2000



Image: Sanders, 2000



Image: Sanders, 2000



wikipedia: Manganese oxide dendrites on a limestone bedding plane



Steffen Rohde with DLA





DLA: Existing Theory

Mostly due to

Harry Kesten (1931 – 2019)

with contributions by Lawler, Makarov, Smirnov, ...



DLA: Existing Theory

We consider the particles as disks of size 1/2 in the plane identified
with their center x1, . . . , xn, . . . and normalize x1 = (0, 0).

One
excepts with high likelihood

√
n

1000
≤ ‖xn‖ ≤ n,

The first is true for Eden or Vold-Sutherland, the second one would
be accurate if it grows along a line. DLA is probably in between.

Theorem (Kesten, 1987)

We have, with high probability,

‖xn‖ ≤ c · n2/3.
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DLA: Kesten’s argument

Theorem (Kesten, 1987)

‖xn‖ ≤ c · n2/3.

We use
R(n) = max {‖xi‖ : 1 ≤ i ≤ n} .

There are two steps.

1. Beurling’s estimate. The likelihood of hitting any fixed
already existing particle is ≤ 1/

√
R(n).

2. Not entirely true but

R(n + 1) . R(n) +
1√

R(n)

would imply R ′(n) ≤ R(n)−1/2 and thus R(n) ∼ n2/3.
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Intermezzo: Arne Beurling (1905 – 1986)

It is not unusual that the same mathe-

matical idea will surface, independently,

in several places, when the time is ripe.

[...] Neither could I have known that

Arne Beurling had found a different

proof in 1929 while hunting alligators in

Panama. (Lars Ahlfors)



Beurling’s estimate

0−ε

Theorem (Beurling)

P of Brownian motion escaping disk before hitting the curve .
√
ε.



Beurling’s estimate II

R(n)

Maximize chances of hitting any specific point by pruning the tree.



Dielectric Breakdown Model (DBM)

Don’t look at the following equations, look at my
handwaving!

DLA: our existing set of particles Ω has a probability
measure µ sitting on ∂Ω. If u : R2 \ Ω satisfies ∆u = 0, then

u(∞) =

∫
∂Ω

u(x)dµ(x).

DBM. Take that density ∂µ/∂σ and raise it to a power η > 0

∂µ

∂σ
→
∣∣∣∣∂µ∂σ

∣∣∣∣η
η = 0 is Eden model, η = 1 is DLA.
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Dielectric Breakdown Model (DBM)

Niemeyer, Pietronero, Wiesmann



Dielectric Breakdown Model (DBM)

η = 0.5 η = 1 η = 2 η = 3

(Image: L. Sander, Fractal Growth Processes, Springer 2011 )

Larger η leads to faster growth of the tips.

Theorem (Losev, Smirnov, 2023)

For 0 < η < 2 in η−DBM one has, up to log factors,

‖xn‖ .log n
2

4−η .
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Dielectric Breakdown Model (DBM)

η = 4 might be the critical exponent for ballistic growth.

η = 2 η = 3.5 η = 4.5

(Images: Hastings, Physical Review Letters, 2001)

I am skipping Hastings-Levitov (Riemann mapping, complex
analysis).
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Gradient Flow Aggregation (GFA)

Goal: a ‘low-tech’ version of these models.

u(∞) =

∫
∂Ω

u(x)dµ(x).

Everybody loves harmonic measure!

but....

1. not so easy to numerically simulate (at least DBM)

2. not always so easy to explain

3. and it’s using a lot of dice!! (pure philosophy)
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Gradient Flow Aggregation (GFA)
Given n particles x1, . . . , xn, a new particle spawns at ‘∞’ (far
away)

and then does a gradient ascent for the function

f (x) =
n∑

i=1

1

‖x − xi‖α
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Conventions. When α = 0, we define
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‖x − xi‖
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then does a gradient ascent for the function

f (x) =
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1
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You pick the new particle uniformly at random from a big disk with
radius R � 1 and let R →∞.

Proposition

The probabilities converge as R →∞.
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α = 0



α = 4



α = 2
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A potential issue

We define things via gradient ascent. What if the gradient flow
gets stuck in a critical point?
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and x1, . . . , xn ∈ R2, how many critical points can
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1
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Maxwell’s Conjecture

f : R2 → R given by

f (x) =
n∑

i=1

1

‖x − xi‖2

has at most (n − 1)2 critical points.

Tsai (2015)

True for n = 3.
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(Lee-Tsai, 2022)

f : R2 → R given by, where ai > 0,

f (x) =
4∑

i=1

ai
‖x − xi‖2

can have 9 critical points.

Image: Lee & Tsai, Nine equilibrium points of four point charges on the plane,
Applied Math Letters (2022)
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f (x) =
n∑

i=1

1

‖x − xi‖2

has at most (n − 1)2 critical points.

Competing Conjecture (Gabrielov, Novikov, Shapiro, 2004)

It has at most 5n − 11 critical points.

(Boris Shapiro, 2015)

I will always assume that the set of critical points is finite.
(Countable would actually already be enough, any ideas?)
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GFA – Main Results

Theorem (Beurling-type estimate)

Let 0 ≤ α ≤ 1 and suppose {x1, . . . , xn} ⊂ R2. Then, for some
cα > 0 depending only on α,

max
1≤i≤n

P (new particles hits xi ) ≤ cα · n
α−1
2α+2 .

Especially nice: we get the optimal rate n−1/2 for α = 0.

Theorem (Beurling-type estimate)

Let 0 ≤ α ≤ 1. We have (whp) that

‖xn‖ ≤ cαn
3α+1
2α+2 .

Optimal rate n1/2 for α = 0.
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Proof of the Beurling-type estimate

xi

x

y

Ω

f (x) =
∑n

i=1 ‖x − xi‖−α

Subharmonic + Green 0 ≤
∫

Ω
∆f (x)dx =

∫
∂Ω

∂f

∂ν
dσ.

Gradient flows implies ∂f /∂ν = 0 on the long gradient flow lines.
On one endpoint there’s an asymptotic expansion (we get the
probability), on the other endpoint concrete pointwise bound.
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I do not know. If you have a gut feeling, let me know. Certainly
α0 ≥ 1. Maybe α0 =∞?
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That case is actually very nice.

1. Generate a random point at ∞ (meaning random angle).

2. Project onto the closest point.
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α =∞, Initial Conditions do not seem to matter.

10 vertices of a regular polygon at distance 100 from the origin.
After 1.000, 5.000, 15.000 and 25.000 steps, respectively.



Thank you!


