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Phlyctis argena on a tree

How does it grow?



Eden Model (1961)

A TWO-DIMENSIONAL GROWTH
PROCESS

MURRAY EDEN
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

1. Introduction

1t is the purpose of this paper to examine certain of the properties of popula-
tions of cells, in particular, properties relating to the architecture of cell colonies.
We imagine that the underlying process in the growth of an organism begins with
& single cell (perhaps derived from the fusion of two germ cells), and then con-
tinues by a process in which the initial cell divides into daughter cells. These in



The Eden Model

4, A “symmetrical” growth process

The first model of “growth” which we will consider is perhaps the simplest.
Distinguish a single node of the square lattice and assume that it is occupied by
a cell v;. Assign equal probability to the configurations obtained by adjoining
one other cell to the nodes adjacent to v, (there are four of these that are obvi-
ously equivalent under rotation). This two-celled configuration has six adjacent
nodes. Again assign equal probability to the six 3-configurations obtained by
adjoining a single cell. This procedure can be carried out indefinitely, each time

adjoining a single cell.

M. Eden, A two-dimensional growth process, Proceedings of Fourth Berkeley
Symposium on Mathematics, Statistics, and Probability, 1961
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The Eden Model

Image: Manin, Rolddn & Schweinhart, Topology and Local Geometry of the

Eden Model, Discrete & Computational Geometry 69, p. 771-799 (2023)
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Anistropy in the Eden Model (1985)

J. Phys. A: Math. Gen. 18 (1985) L1163-L1168. Printed in Great Britain

LETTER TO THE EDITOR

Surface structure and anisotropy of Eden clusters

P Frechet, D Stauffert} and H E Stanley}

t Institute of Theoretical Physics, Cologne University, 5000 Koln 41, West Germany
1 Center for Polymer Studies, Boston University, Boston, MA 02215, USA

Received 10 September 1985

Abstract. The simple Eden model is simulated with clusters which are orders of magnitude
larger than those of some previous work. The ‘surface’ (perimeter) is slightly anisotropic
and feels the underlying structure of the square lattice even for 17 million cluster sites.
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Figure 2. The centre of perimeter region, averaged over nine clusters with 4 million sites

each. To make the very slight anisotropy more visible, most of the inner space is omitted;
actually the radius is two orders of magnitude larger than the width of the ring.



Vold-Sutherland

Particles travel along random linear trajectories and stop the
moment they first hit the existing cluster.



Vold-Sutherland

Particles travel along random linear trajectories and stop the
moment they first hit the existing cluster.

141 LATTICE UNITS 201 PARTICLE DIAMETERS

FIG. 1. A typical cluster of 10,000 particles grown in
a two-dimensional simulation using the Vold~Suther-
land (VS) model.

FIG. 2. A cluster of 10,000 particles grown on a two-
dimensional lattice using the Eden model.

Image: Paul Meakin, The Vold-Sutherland and Eden Models of Cluster Formation
Journal of Colloid and Interface Science, Vol. 96, No. 2, December 1983



Diffusion-Limited Aggregation (DLA)

VoLuME 47, NUMBER 19 PHYSICAL REVIEW LETTERS 9 NOVEMBER 1981

Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon

T. A. Witten, Jr.®
Groupe de Physique de la Matieve Condensée, CallEge de France, F-75231 Pavis, France

and
L. M. Sander

Physics Department, University of Michigan, Ann Arbor, Michigan 48109
(Received 31 August 1981)

Idea: a particle travels by diffusion (a random walk) and stops the
moment it first touches the existing set of particles.



Witten-Sanders, 1981

20 Lattice Constants
S

FIG. 1. Random aggregate of 3600 particles on a
square lattice.
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DLA is often considered on lattice Z2 vs. R2. There seems to be a
difference.



Grebenkov-Beliaev, 2017

DLA is often considered on lattice Z2 vs. R2. There seems to be a
difference. 145.199.976 particles
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Image: Halsey, 2000



N=1,000,000

Figure 3. A large DLA cluster, N= 100 000. The radius of this
object is roughly 15 times that of the cluster in figure 1. The
colours represent the time of arrival: thus white is the first 1/10
of N, grey the second 1/10, etc. There are ten colours in all.

Image: Sanders, 2000



Figure 6. A zinc electrodeposit produced in a thin cell. The

Figure 5. A radial viscous fingering pattern. Air is injected electrolyte is conﬁnefl bgtween two plexiglass pl?tes held 0.1 mm
through the tube in the centre and displaces fluid (glycerin) which apart. .The (.:athode is inserted through a hole in .Lhe plate, and
is confined between two plates held 1 mm apart. The pattern is there is a ring anode (not shown). The pattern is about 3 cm
about 20 cm across. across.

Image: Sanders, 2000



Figure 7. A colony of Paenibacillus dendritiforn is bacteria, T
morphotype, grown on hard agar and under severe starvation.
The pattern is about 10 cm across. Courtesy of E. Ben-Jacob.

Image: Sanders, 2000



wikipedia: Manganese oxide dendrites on a limestone bedding plane



Steffen Rohde with DLA






DLA: Existing Theory

Mostly due to

Harry Kesten (1931 — 2019)

with contributions by Lawler, Makarov, Smirnov,
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We consider the particles as disks of size 1/2 in the plane identified

with their center xi, ..., Xy, ... and normalize x; = (0,0). One
excepts with high likelihood

Vvn

— < <

1000 — ||Xn” — n7

The first is true for Eden or Vold-Sutherland, the second one would
be accurate if it grows along a line. DLA is probably in between.

Theorem (Kesten, 1987)
We have, with high probability,

Ixall < c - /3,
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DLA: Kesten's argument

Theorem (Kesten, 1987)

|xnll < c- n?/3,

We use
R(n) = max{||xj|| : 1 <i<n}.
There are two steps.

1. Beurling’s estimate. The likelihood of hitting any fixed
already existing particle is < 1/4/R(n).
2. Not entirely true but

1
R(n)

R(n+1) < R(n) +

would imply R'(n) < R(n)~%2 and thus R(n) ~ n?/3.



Intermezzo: Arne Beurling (1905 — 1986)

It is not unusual that the same mathe-
matical idea will surface, independently,
in several places, when the time is ripe.
[..] Neither could | have known that
Arne Beurling had found a different
proof in 1929 while hunting alligators in
Panama. (Lars Ahlfors)




Beurling's estimate

Theorem (Beurling)
IP of Brownian motion escaping disk before hitting the curve < \/c.



Beurling's estimate |l

Maximize chances of hitting any specific point by pruning the tree.



Dielectric Breakdown Model (DBM)

VOLUME 52, NUMBER 12 PHYSICAL REVIEW LETTERS 19 MARCH 1984

Fractal Dimension of Dielectric Breakdown

L. Niemeyer, L. Pietronero,® and H. J. Wiesmann
Brown Boveri Research Center, CH-5405 Baden, Switzerland
(Received 23 November 1983)

Don’t look at the following equations, look at my
handwaving!
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VOLUME 52, NUMBER 12 PHYSICAL REVIEW LETTERS 19 MARCH 1984

Fractal Dimension of Dielectric Breakdown

L. Niemeyer, L. Pietronero,® and H. J. Wiesmann
Brown Boveri Research Center, CH-5405 Baden, Switzerland
(Received 23 November 1983)

Don’t look at the following equations, look at my
handwaving! DLA: our existing set of particles 2 has a probability
measure p sitting on 0Q. If u: R2 \ Q satisfies Au =0, then

u(oc0) = /BQ u(x)du(x).

DBM. Take that density Ou/0o and raise it to a power 7 > 0

on _, |ow|"

(90'—> Jo

n =0 is Eden model, n =1 is DLA.



Dielectric Breakdown Model (DBM)

FIG. 1. Time-integrated photograph of a surface
leader discharge (Lichtenberg figure) on'a 2-mm glass
plate in 0.3-MPa SF¢. Applied voltage pulse: 30 kVx1
us (Ref. 5). This experiment corresponds to an equipo-
tential channel system growing in a plane with radial elec-
trode.

Niemeyer, Pietronero, Wiesmann



Dielectric Breakdown Model (DBM)

(Image: L. Sander, Fractal Growth Processes, Springer 2011 )
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Larger n leads to faster growth of the tips.



Dielectric Breakdown Model (DBM)

(Image: L. Sander, Fractal Growth Processes, Springer 2011 )

Larger n leads to faster growth of the tips.

Theorem (Losev, Smirnov, 2023)
For 0 < < 2 in n—DBM one has, up to log factors,

2
[1Xal| Siog n*=.



Dielectric Breakdown Model (DBM)

n = 4 might be the critical exponent for ballistic growth.
5

n=2 n=3. n=45

(Images: Hastings, Physical Review Letters, 2001)



Dielectric Breakdown Model (DBM)

1 = 4 might be the critical exponent for ballistic growth.

(Images: Hastings, Physical Review Letters, 2001)

| am skipping Hastings-Levitov (Riemann mapping, complex
analysis).
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Gradient Flow Aggregation (GFA)

Goal: a ‘low-tech’ version of these models.

u(o0) = /{m u(x)du(x).

Everybody loves harmonic measure!

but....
1. not so easy to numerically simulate (at least DBM)
2. not always so easy to explain

3. and it's using a lot of dice!! (pure philosophy)
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Gradient ascent for the function

n 1
)= —— .
(=2 e



Gradient Flow Aggregation (GFA)

Gradient ascent for the function

a=1 a=2

GFA for n = 1000 particles with various parameters of «.
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Gradient Flow Aggregation (GFA)

Given n particles xi, ..., x,, @ new particle spawns at oo and
then does a gradient ascent for the function

u 1
F) =S ——.
0= 2

You pick the new particle uniformly at random from a big disk with
radius R > 1 and let R — oc.

Proposition

The probabilities converge as R — oo.
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Disclaimer

A potential issue
We define things via gradient ascent. What if the gradient flow
gets stuck in a critical point?

Local analysis shows that there is at most one trajectory per
critical point, so not a big issue. Except...

Question
How many critical points are there? Formally, given 0 < o < o0
and x1,...,x, € R?, how many critical points can

n

f(x)= Z _ have?

2 x|
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ductors, the number arising in this way cannot exceed
('n—l) ('n 2), where 7 is the number nf bod.\u"

* {I have not been able to find any place where this result is proved. !

(Second edition, commented by J. J. Thomson)
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Maxwell's Conjecture
f : R> — R given by

: 1
f)=S ——
(=2 e

has at most (n — 1)? critical points.

Tsai (2015)
True for n = 3.

James Clerk Maxwell



(Lee-Tsai, 2022)
f : R> — R given by, where a; > 0,

4
aj
fx) =y —2
€)= L =T
i=1
can have 9 critical points.

Cased

0.003

Image: Lee & Tsai, Nine equilibrium points of four point charges on the plane,
Applied Math Letters (2022)
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Maxwell's Conjecture

Z Ix = X:HQ

has at most (n — 1)? critical points.
Competing Conjecture (Gabrielov, Novikov, Shapiro, 2004)

It has at most 5n — 11 critical points.

Conjecture 2 (folklore, very irritating). For any set of charges of the same sign
in R™, the set of its points of equilibrium is finite.

(Boris Shapiro, 2015)

| will always assume that the set of critical points is finite.
(Countable would actually already be enough, any ideas?)
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Theorem (Beurling-type estimate)

Let 0 < o < 1 and suppose {xi,...,x,} C R2. Then, for some
Co > 0 depending only on «,

a—1
max PP (new particles hits x;) < ¢, - n2e+2.
1<i<n

—-1/2

Especially nice: we get the optimal rate n for a = 0.

Theorem (Beurling-type estimate)
Let 0 < a < 1. We have (whp) that

xnll < can®ot.

Optimal rate n'/2 for a = 0.
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()
DO="4
X

Fx) = 220 [Ix =il ™
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Subharmonic + Green 0< / Af(x)dx = ——do.
Q oq OV
Gradient flows implies 9f /Ov = 0 on the long gradient flow lines.
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Proof of the Beurling-type estimate

Y
Q
‘X
Fx) = 2200 lx =il
: of
Subharmonic + Green 0< [ Af(x)dx = ——do.
Q oa OV

Gradient flows implies 9f /Ov = 0 on the long gradient flow lines.
On one endpoint there's an asymptotic expansion (we get the
probability), on the other endpoint concrete pointwise bound.
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Beurling implies (via Kesten) a growth bound

Kesten's method is really done on Z? while we work on R2,

infinite 6—regular tree

Then: arguments by Benjamini - Yadin (2017).
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Ballistic vs. sub-ballistic growth

Question
Is there a phase transition 0 < ag < co such that

l|xnl] < cont e for a < ap

and
|Xnl| > can for e > ag?

| do not know. If you have a gut feeling, let me know. Certainly
ag > 1. Maybe ag = c0?
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That case is actually very nice.
1. Generate a random point at co (meaning random angle).

2. Project onto the closest point.

ol




The case a = o0






o = o0, Initial Conditions do not seem to matter.

. AN

—

/S {

e

10 vertices of a regular polygon at distance 100 from the origin.
After 1.000, 5.000, 15.000 and 25.000 steps, respectively.



THANK YOU!



