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A B ST R A CT 

Neotropical leaf-nosed bats (family Phyllostomidae) underwent an impressive adaptive radiation characterized primarily by the diversification 
of dietary strategies in tandem with functional morphological diversification of their craniodental and sensory systems. In this perspective, 
we integrate information from extensive research across multiple fields to outline the interplay between extrinsic and intrinsic drivers of the 
phyllostomid adaptive radiation and the resulting ecomorphological diversity of the clade. We begin by exploring the relationship between 
phyllostomids and their environments, focusing on the ecogeographical drivers of their radiation. Then, we detail current knowledge about the 
role of genes and development in enabling morphological diversification of the group. Finally, we describe the breathtaking ecomorphological 
diversification of phyllostomids, trying to unveil functional connections underlying their diverse dietary niches.

Keywords: adaptive radiation; Chiroptera; ecomorphology; evo-devo; diet; Phyllostomidae

I N T RO D U CT I O N
Adaptive radiations are exceptional instances of diversification 
in which a lineage rapidly speciates from a common ancestor in 
tandem with diversification of phenotypic traits that enhance 
performance within novel ecological niches (Schluter 2000, 
Gillespie et al. 2020). Mammals have diversified into thousands 
of species throughout their evolutionary history, but adaptive 
radiations—including their characteristic ‘early burst’ pattern 
(Simpson 1944)—seem to be rare or difficult to detect (Harmon 
et al. 2010). A suite of methodological issues may explain this 
difficulty, including the scarcity of ecomorphological studies 
that span whole mammal clades, the choice of nonfunctional 
phenotypic traits for phylogenetic comparative analyses, and the 
lack of well-resolved phylogenies with integration of fossil data 
(Slater et al. 2012, Mitchell 2015).

Nevertheless, some mammal lineages have emerged as models 
for investigating adaptive radiation. Bats (Chiroptera) are among 
these outstanding groups; they are the only mammals capable 
of powered flight and the second largest mammal order (>1400 
extant species, Simmons and Cirranello 2024). Chiroptera prob-
ably radiated adaptively shortly after the evolution of powered 
flight (Teeling et al. 2005). However, rigorous tests of this hy-
pothesis have not been possible due to a fossil record that is 

largely uninformative about the lineage’s early diversification, and 
a poor understanding of how wing morphological traits relate to 
flight performance metrics and niche partitioning (e.g. Swartz et 
al. 2003, Hedenström and Christoffer Johansson 2015). Within 
bats, however, at least six instances of increased rates of species 
diversification have been detected (Dumont et al. 2011, Shi and 
Rabosky 2015, Almeida et al. 2021, Upham et al. 2023). Notably, 
three of these radiations occurred in tandem with diet shifts: (i) 
Pteropodidae (202 species), a Palaeotropical plantivorous clade; 
(ii) Phyllostomidae (227 spp.), a Neotropical clade spanning a 
wide dietary diversity; and (iii) Stenodermatinae (101 spp.), a 
clade of frugivorous phyllostomids (Fig. 1). Trophic transitions 
therefore seem to have played a salient role in chiropteran diver-
sification.

We focus on the family Phyllostomidae (Fig. 1), which is 
the best known bat adaptive radiation due to extensive study 
of their systematics, development, natural history, ecology, 
and morphology (Fleming et al. 2020). Outcomes from this 
large body of work suggests that the phyllostomid radiation 
occurred relatively rapidly, over the course of ~30 Myr (with 
extant subfamilies represented in the fossil record and dietary 
diversification well underway in the Miocene, 13–11.5 Mya; 
Rojas et al. 2016, Simmons et al. 2020). During their radiation, 
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phyllostomids evolved sensory specializations and extreme 
craniodental morphologies that allowed the exploitation of novel 
dietary niches (insectivory, frugivory, nectarivory, carnivory, 
sanguinivory, omnivory) across a multitude of ecosystems in the 
neotropics (Wetterer et al. 2000). In this perspective, we first de-
tail the relationship between phyllostomids and their environ-
ments, identifying potential extrinsic drivers of their radiation. 
Then, we describe developmental and genetic factors underlying 
phyllostomids’ diverse morphologies, to give a current outlook 
of the potential intrinsic drivers of the radiation. Finally, we de-
scribe how phenotypes are adapted to fulfil diverse ecological 
niches in this most striking—yet often overlooked—adaptive 
radiation of mammals.

E X T R I N S I C  D R I V E R S
Habitat diversity is pivotal among the extrinsic drivers of the 
phyllostomid adaptive radiation. Phyllostomids thrive in a wide 
range of environments, from tropical rainforests to deserts and 
high-altitude regions, and in natural, rural, and urban environ-
ments (Stevens et al. 2020). Having evolved in the Neotropics, a 
region with high habitat heterogeneity, phyllostomids were pre-
sented with ample opportunity for diversification. Ultimately, 
their ability to exploit diverse habitats provided them with 
abundant ecological opportunities to excel in particular niches 
(Monteiro and Nogueira 2011), fostering speciation and re-
silience in the face of environmental fluctuations and habitat 
fragmentation (Festa et al. 2023). Presently, phyllostomids 
vary in their use of microhabitats within particular biomes 

or ecosystems; for instance, in sympatry, lineages such as the 
Phyllostominae are more frequently found in forests whereas 
Carolliinae are found in forest edges or open areas (Farneda et al. 
2015). In complex habitat mosaics composed of forests, grass-
lands, plantations, and orchards, phyllostomid lineages differ 
in their habitat preferences according to their guilds, further 
leading to differences in microhabitat use between open and 
closed areas (Heer et al. 2015). Additionally, phyllostomid lin-
eages differ in their vertical use of forests, as some species mainly 
occupy the canopy or the understorey, and others span multiple 
strata (Bernard 2001).

Phyllostomids are able to use a remarkable range of roost types 
within their habitats: from caves and tree hollows to foliage and 
human-made structures (Rodríguez-Durán 2020). This facili-
tates their expansion into new habitats and microhabitats, as well 
as access to distinct resources and protection against predators 
(Voss et al 2016, Rodríguez-Herrera et al. 2018). Further, over 
a dozen phyllostomid species have evolved the ability to modify 
leaves into tent roosts, a behaviour that opened another range 
of possible microhabitats within forests (Rodríguez-Herrera et 
al. 2018).

The astounding colonization of multiple habitats and micro-
habitats by phyllostomids is now better understood thanks to 
intensive phylogenetic scrutiny in recent decades. Molecular 
phylogenies have reshaped our understanding of phyllostomid 
evolution and biogeography (Teeling et al. 2005, Rojas et al. 
2016), for example by highlighting the key role of continental-
scale dispersal events and ecological determinants in genus-
level cladogenesis (Dávalos et al. 2020). The Andes emerge as a 

Figure 1. A, phylogeny of representative phyllostomid species and closely related families illustrating exceptional diversity in primary diet 
and skull morphology, particularly the degree of skull elongation; Δ: nodes with increased rates of species diversification, *: node with a 
diet-associated ‘early burst’ in molar shape evolution (see text for details). B–E, example phyllostomid species showcasing dietary diversity: 
Trinycteris nicefori (B, insectivore, credit: ©MerlinTuttle.org), Vampyrum spectrum (C, carnivore, credit: ©MerlinTuttle.org), Anoura fistulata 
(D, nectarivore, credit: Nathan Muchhala), and Platyrrhinus lineatus (E, frugivore, credit: Marco Mello).

D
ow

nloaded from
 https://academ

ic.oup.com
/evolinnean/article/3/1/kzae032/7879527 by guest on 20 D

ecem
ber 2024



THE ECOMORPHOLOGICAL RADIATION OF PHYLLOSTOMID BATS • 3

significant factor in phyllostomid evolution, alongside lowland 
rainforests and large rivers, particularly for stenodermatine di-
versity (Villalobos and Arita 2010). In Central America, the 
Antilles represent a large-scale habitat mosaic that resulted in 
another hotspot of phyllostomid diversification (Dávalos 2007, 
Rojas et al. 2016). As family-wide analyses may oversimplify bio-
geographical patterns, there is a growing imperative to extend 
studies to genus or subfamily levels to validate emerging trends 
across the entire radiation and understand the interplay between 
geoclimatic factors and niche adaptations within the family.

Stemming from habitat diversity, dietary opportunity is 
key to understanding phyllostomid diversification; the evolu-
tion of frugivory and omnivory as primary diets is a remark-
able feature that propelled this radiation (Rojas et al. 2011; 
Fig. 1). While many frugivorous species feed solely on fruits, 
omnivores supplement their diet with insects, nectar, pollen, 
or small vertebrates, and show a hierarchy among food types 
(Andrade et al. 2013). This dietary flexibility allows these spe-
cies to exploit a wide range of resources, thereby reducing com-
petition and niche overlap with coexisting species (Findley 
1993, Kalko 1998, Giannini and Kalko 2004) and enabling 
adaptation to changing environmental conditions and resource 
availability (Lobova et al. 2009). More broadly, phyllostomids’ 
dietary diversity has multiplied their interactions with other 
animals, plants, and microorganisms (Rossoni et al. 2017, 
Potter et al.; 2021, Caraballo 2022). These interactions be-
tween phyllostomids and other species range from mutualistic 
to antagonistic within local networks and have significantly 
influenced their adaptive radiation (Monteiro and Nogueira 
2011, Mello and Muylaert 2020).

On the mutualistic side of interaction networks, phyllostomids 
contribute to plant reproduction and community dynamics as 
pollinators and seed dispersers (Ramírez‐Fráncel et al. 2022), 
which are critical roles for Neotropical forest conservation and 
restoration (Bianconi et al. 2007, Kelm et al. 2008, Reid et al. 
2015). The intricate web of ecological interactions within which 
phyllostomids are embedded has probably facilitated their ra-
diation by creating niche partitioning and coexistence oppor-
tunities (Saldaña-Vázquez 2014). Moving from mutualistic 
to antagonistic, interactions between phyllostomids and their 
competitors, predators, and parasites can impose selective pres-
sures that influence species diversification and ultimately eco-
system functioning (Webber and Willis 2016, Tendu et al. 2022, 
Szentivanyi et al. 2023). Competitive antagonistic interactions 
among phyllostomid species have been hypothesized to con-
tribute to their adaptive radiation, leading to character displace-
ment and niche partitioning (e.g. Verde Arregoitia et al. 2018, 
Shi et al. 2018, López-Aguirre et al. 2023). This process is prob-
ably clade- and character-dependent; for example, while dental 
traits show signals of divergent, stabilizing, or nonselective 
evolution (López-Aguirre et al. 2023), size traits can converge 
among phyllostomid species in sympatry (Verde Arregoitia et al. 
2018). Further in the realm of antagonisms, studies elucidating 
bat–ectoparasite interaction networks highlight the importance 
of relative abundance in determining species functional roles 
(Falcão et al. 2022) and the crucial role that phyllostomids play 
in mediating ecological interactions within their communities 
(Mello et al. 2021).

In this ‘web of life’ (sensu Humboldt), a combination of 
dietary specialization, relative abundance, and unique ecological 
interactions position phyllostomids as keystone species within 
many ecosystems (Muscarella and Fleming 2007, Kunz et al. 
2011, Ramírez‐Fráncel et al. 2022, Barbier et al. 2024). Dietary 
specialization and abundance greatly influence phyllostomid 
species’ centrality in seed dispersal networks across the 
Neotropics (Mello et al. 2015, de Souza Laurindo et al. 2020). 
Notably, the centrality of specialized frugivores and nectarivores 
varies significantly within and among networks, underscoring 
the nuanced role that dietary preferences and abundance play in 
defining their importance within ecological networks (de Souza 
Laurindo et al. 2020, González-Gutiérrez et al. 2022). Moreover, 
multilayer network analyses involving frugivory and nectarivory 
interactions between phyllostomids and plants highlight phylo-
genetic constraints that segregate species into different layers 
(Mello et al. 2019). Within these networks, organismal traits re-
lated to fruit or nectar consumption dictate a species’ module 
identity and centrality (Mello et al. 2019, Mello and Muylaert 
2020). This underscores the intricate interplay between func-
tional morphology, abundance, and complexity in shaping the 
roles of phyllostomid bats within their ecosystems.

I N T R I N S I C  D R I V E R S
Ecological adaptation is ultimately the result of selection on 
the raw materials provided by the intrinsic (genetic, construc-
tional, developmental) qualities of organisms (Gilbert 2001). 
Therefore, adaptive radiations can stem from alterations in devel-
opmental programmes, including the timing of developmental 
events (heterochronies) and developmental genes, networks, or 
processes. Studies that consider these aspects in nonmodel or-
ganisms are exceptionally challenging and remain a frontier in 
bat research (Moczek et al. 2015, Sadier et al. 2020). However, 
evo-devo studies have already provided unprecedented insight 
into the origin and evolution of phyllostomid adaptations to 
their diverse foraging and roosting ecologies.

Heterochronies appear to be common at various organismal 
levels in phyllostomids. For example, earlier events in palate de-
velopment are more conserved than later ones (Sears 2013), 
echoing variation in gestation length that results in species being 
born precocial or well-furred (Cretekos et al. 2005). Craniofacial 
development as a whole presents heterochronic shifts between 
species with different diets, with nectarivores and sanguinivores 
exhibiting peramorphosis, and frugivores exhibiting terminal 
acceleration to achieve their final forms (Camacho et al. 2019). 
This heterochronic variation seems to be explained by variation 
in growth rate during development through a differential cell 
division rate, which is also responsible for the difference in ros-
tral length between nectarivores and frugivores (Camacho et al. 
2020; Fig. 1). In turn, differential growth rate of the jaw influ-
ences the number and size of postcanine teeth, in some cases by 
breaking classical developmental constraints and allowing spe-
cies to explore new morphologies that are unique in mammals 
(Sadier et al. 2023). Therefore, it appears that subtle variations in 
growth rate were sufficient to drive the morphological and func-
tional diversification of phyllostomids (Sears 2013, Sorensen  
et al. 2014, Sadier et al. 2023), assuming that they evolved through 
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a line of least resistance in rostral length (Hedrick et al. 2020; and 
see below). Specific developmental drivers have been proposed 
to regulate rostrum growth rate, in particular RUNX2, which has 
been shown to regulate face length in mammals (Pointer et al. 
2012). The number of poly-glutamine, poly-alanine repetitions 
in this gene is linked to variation of palate width and length in 
phyllostomids, particularly in short-faced stenodermatines 
(Ferraz et al. 2018). Whether these mutations have a direct effect 
on morphology remains to be tested, but suggests one of many 
potential mechanisms driving the rapid variation in face length 
in phyllostomids (Sadier et al. 2023).

Over the past few years, differences in sensory organ devel-
opment in phyllostomids have been linked to sensory special-
ization and tradeoffs among diverse dietary niches. For example, 
phyllostomid cochleas develop at their final size, constraining 
the development of other sensory organs by restraining the 
space available in the skull, particularly in nectarivores (Anthwal 
et al. 2023a). Some sensory-related genes such as OPN1SW or 
TRPC2 are frequently lost in phyllostomids, suggesting these re-
gions have the potential to drive diversification of colour vision 
and olfaction capabilities through rapid losses and potential re-
gains (Gutierrez et al. 2018, Kries et al. 2018, Sadier et al. 2018, 
Yohe et al. 2018, 2021, Simões et al. 2019).

Finally, the development of the hallmark feature of bats, wing 
membranes, echoes the developmental patterns found in the 
phyllostomid cranium. For example, interspecific differences in 
wing membrane morphologies arise by processes that take place 
after the initial formation of the wing membrane (Anthwal et al. 
2023b). Phyllostomids retain conserved mammalian mechan-
isms and candidate genes (e.g. RIPK4) for the emergence and di-
versification of membranes (Anthwal et al. 2023b), highlighting 
how selection has operated on ancestral developmental mechan-
isms to foster this mammalian adaptive radiation.

ECO M O R P H O LO G I C A L  D I V E R S I F I C AT I O N
Resulting from the extrinsic and intrinsic drivers outlined 
above, phyllostomids evolved specialized phenotypes during 
their adaptive radiation. Many of these morphological and be-
havioural traits have direct functional significance by enhancing 
performance of the sensory and feeding systems towards specific 
dietary niches.

Given their diverse habitats and diets, phyllostomids are 
adapted to process information from various sensory channels. 
They typically forage in dense habitats or glean prey from sur-
faces using frequency-modulated multiharmonic echolocation 
calls for navigation and prey detection (Yoh et al. 2020, but see 
Gessinger et al. 2019). In addition to echolocation, carnivorous 
species eavesdrop on sounds produced by their prey (e.g. frog-
eating bats; Page et al. 2012), frugivorous and nectarivorous spe-
cies sniff out scent cues produced by fruits or flowers (Thies et al. 
1998, Gonzalez-Terrazas et al. 2016, Leiser-Miller et al. 2020), 
and vampire bats use thermosensation to locate their vertebrate 
prey (Gracheva et al. 2011).

Phyllostomids are one of several chiropteran lineages that 
evolved nasophonation—a mode of echolocation that relies 
on laryngeally produced, ultrasonic calls that are transmitted 
through the nasal cavity and emitted via the nostrils ( Jones 

2005). Characteristic of phyllostomids is their noseleaf, a 
fleshy and often spear-shaped structure putatively implicated 
in sound modification, and after which they get their common 
name: the neotropical leaf-nosed bats. Across species, the three-
dimensional shape of the noseleaf is correlated with echoloca-
tion call maximum frequency and bandwidth, and has evolved 
in a modular fashion to produce morphological differences 
among species that fall into broad dietary categories (mobile 
prey vs. immobile food items; Leiser-Miller and Santana 2020). 
Similarly, external ear shape and the morphology of the malleus 
and incus vary among species that specialize on different diets 
(Leiser-Miller and Santana 2020, Dickinson et al. 2023), prob-
ably related to differences in hearing sensitivity found at even 
finer levels of niche differentiation (Geipel et al. 2021). Further, 
phyllostomids exhibit thinner laryngeal cartilages and greater la-
ryngeal diversity, probably due to reliance on senses other than 
echolocation for foraging (Brualla et al. 2024) and supporting 
the notion of tradeoffs between senses (Thiagavel et al. 2018). 
Phyllostomid echolocation morphologies therefore appear to be 
fine-tuned to the different demands imposed by the detection of 
specific food items in their respective habitats.

Phyllostomid skulls provide a wealth of information about 
how they adaptively radiated to occupy diverse dietary niches. 
Cranial anatomical modules related to sensory systems evolved 
at faster rates prior to accelerated changes in mechanical 
(feeding-related) modules (Mutumi et al. 2023). This empha-
sizes the possibility that sensory evolution was the first step to 
facilitating the phyllostomid radiation (Hall et al. 2021, Mutumi 
et al. 2023). Subsequently, cranial evolution underwent shifts to 
adaptive zones that largely match dietary transitions (Arbour et 
al. 2019). This process is characterized by exceptionally fast rates 
of rostral length evolution and high selective pressures leading to 
extremes in cranial elongation—from long-faced nectarivores to 
short-faced frugivores (Rossoni et al. 2017, Arbour et al. 2021; 
Fig. 1). The evolution of the mandible shows an even tighter 
association with diet; adaptive shifts in mandible shape—pre-
dominantly length—match transitions in diet (Monteiro and 
Nogueira 2011, Arbour et al. 2019), with resulting differences 
in mechanical advantage, peak bite force and its position along 
the tooth row, and tooth number also corresponding to dietary 
groupings (Nogueira et al. 2009, Santana et al. 2022, Sadier et 
al. 2023). Therefore, skull elongation appears to have facilitated 
the rapid dietary evolution of phyllostomids by acting as a line 
of least resistance for ecomorphological changes (Dumont et 
al. 2011, Ferraz et al. 2018, Hedrick and Dumont 2018, Arbour 
et al. 2019, Camacho et al. 2019, Hedrick et al. 2020). This idea 
is further supported by recent studies correlating rapid evo-
lution in jaw length and tooth gains/losses and proportions in 
phyllostomids and close relatives (Sadier et al. 2023). While 
some integration patterns that possibly affected the evolution of 
phyllostomid skull elongation have been identified (see previous 
section), the underlying mechanisms have just started to be in-
vestigated.

The jaw muscles that connect the cranium and mandible 
to enable biting and mastication also show differences in 
physiological cross-sections and internal architecture among 
phyllostomid diet groups (Santana et al. 2010, Santana 2018). 
These range from reduced cross-sections in nectarivores (which 
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in turn have elongated and specialized tongues; Freeman 1995, Winter and Helversen 2003, Quinche et al. 2023, Muchhala 

Figure 2. Summary of the main drivers and processes underlying the adaptive radiation of phyllostomid bats.
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et al. 2024), to robust temporalis muscles in species that feed 
on tough food items (e.g. vertebrates, hard fruit; Santana et al. 
2010). Together, these features function to produce bite forces 
that match dietary mechanical demands, from weak bites in spe-
cies that feed on liquids and soft foods, to forceful bites in spe-
cies that feed on vertebrates or tough fruits (Aguirre et al. 2002, 
Dumont et al. 2009, Santana et al. 2010).

Teeth tell the most compelling story about the phyllostomid 
adaptive radiation’s tempo and modes of evolution. Phyllostomid 
molars are specialized for efficient processing of different foods: 
insectivorous and omnivorous species have dilambdodont 
molars with shearing crests that cut through insect exoskeleton, 
frugivores have flattened molars that help mash up fruit pulp, 
whereas nectarivorous and sanguinivorous species have reduced 
molar morphologies (Freeman 1988, Santana et al. 2011, López-
Aguirre et al. 2022). Diet-associated components of 3D molar 
shape exhibit an ‘early burst’ pattern in molar shape diversifi-
cation within the phyllostomid subclade that underwent rapid 
dietary evolution (Grossnickle et al. 2024; Fig. 1). This early burst 
in morphological diversification was then followed by less dra-
matic morphological changes within the dietary adaptive zones, 
probably reflecting finer-scale niche partitioning (Grossnickle 
et al. 2024; Fig. 2). Initial shifts to derived diets probably posed 
strong selective pressures on molar development mechanisms, 
which freed molars from functional constraints associated with 
the ancestral molar morphotype and molar proportions found 
in most mammals (Kavanagh et al. 2007, Polly 2007, Sadier et al. 
2023). Altogether, the evolution of phyllostomid craniodental 
morphologies fits traditional models of adaptive radiation 
(Simpson 1944, Schluter 2000), which are characterized by an 
initial explosive phase of ecomorphological diversification, fol-
lowed by slower evolution in the resulting adaptive zones.

CO N CLU D I N G  R E M A R K S
A complex interplay of extrinsic (habitat, roosts, diet, and inter-
actions) and intrinsic (integration, heterochrony, cell division 
rates, and modification of developmental programmes) factors 
appear to have driven the phyllostomid adaptive radiation. By 
colonizing and then thriving in diverse niches, phyllostomids 
diversified into a remarkable array of species, many with morph-
ologies finely tuned to specific ecologies. Understanding the 
multifaceted drivers of the phyllostomid adaptive radiation has 
only been possible due to intensive research by hundreds of sci-
entists who have helped establish phyllostomids as a model of 
mammalian adaptive radiation. Future research that directly and 
quantitatively integrates evidence across fields and organismal 
scales in this system has exciting potential to continue furthering 
our understanding of the mechanisms that generate and main-
tain biodiversity.
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