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Wing morphology predicts 
geographic range size in 
vespertilionid bats
Bo Luo1,2, Sharlene E. Santana3, Yulan Pang1, Man Wang1, Yanhong Xiao2 & Jiang Feng2,4

Why some species are widespread across continents while others are confined geographically remains 
an open question in ecology and biogeography. Previous research has attempted to explain interspecific 
variation in geographic range size based on differences in dispersal ability. However, the relationship 
between dispersal ability and geographic range size remains uncertain, particularly in mammals. The 
goal of this study is to test whether geographic range size can be predicted by dispersal capacity among 
vespertilionid bats within a phylogenetic comparative framework. We integrated a large dataset on 
range area, longitudinal extent, wing morphology (a proxy for dispersal ability), migratory habit, 
and biogeographic realm across 126 vespertilionid bat species. We used phylogenetic regressions to 
disentangle the associations between these predictor factors and species range size while controlling 
for the effects of migration and biogeographic realm. Our analyses revealed that bat species with higher 
wing loading exhibit larger distribution ranges than those with lower wing loading, and that the size of 
geographic ranges was associated with wing aspect ratio in bats. These results highlight the relationship 
between wing morphology and range size in flying mammals, and suggest a role of dispersal capacity in 
shaping species’ geographic distributions.

Why some species are widespread across continents while others are confined geographically remains obscure, 
despite the sustained interest from ecologists and evolutionary biologists1–6. Geographic range size—the extent of 
a species’ occurrence—is a basic biogeographic variable used to determine population abundance and survival7. 
As a consequence, geographic range size has been an important parameter used to assign species’ extinction risk 
in the Red List of the International Union for Conservation of Nature8. A deeper understanding of the causes of 
interspecific variation in geographic range size has important implications for biodiversity conservation, in par-
ticular under global climate change scenarios9,10.

A multitude of ecological and evolutionary processes may constrain species’ geographic distributions. One 
of the most common explanations for interspecific differences in geographic range size is the site colonization 
hypothesis, which emphasizes the importance of dispersal ability1,7,11. Because long-distance dispersal confers 
the ability to colonize new habitats, species with greater dispersal ability are expected to have larger distribution 
ranges compared with poor dispersers11–13. Support for the site colonization hypothesis has been found in some 
terrestrial and aquatic organisms. For example, ecomorphological predictors of dispersal distance account for 
the observed variation in range area among warblers14. In Indo-Pacific coral reef fishes, species’ range areas are 
predicted by the duration of pelagic larval phrase, a good surrogate for dispersal potential13. In freshwater insects, 
mayflies with high dispersal potential tend to be more widespread than poorly dispersing species15. Nonetheless, 
it remains unknown if dispersal ability affects the sizes of geographic ranges in most mammal groups.

Bats are one of the most species-rich group of mammals, representing over 20% of all extant mammal spe-
cies16. They are distributed globally, except in the polar regions and some isolated islands, presumably owing to 
their ability for powered flight17. It has been shown that bat wing morphology determines their ability to disperse 
into new geographic regions18,19. In general, bats with higher wing loading (i.e., larger body mass relative to wing 
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surface area) fly at higher speeds and greater distances18, allowing them to extend their ranges even in fragmented 
landscapes. In addition, bats with higher aspect ratio (i.e., greater wing length relative to wing width) suffer lower 
drag and enhanced aerodynamic efficiency during flight20, which may facilitate long-distance movement across 
geographic barriers and ultimately range expansion. Prior studies have focused on the effects of ecological factors 
on biogeographic patterns among some bat lineages21–23. It is still unclear, however, whether the site colonization 
hypothesis holds for bats, especially in a phylogenetic context.

Here, we aim to assess the influence of dispersal ability on geographic range size in vespertilionid bats through 
phylogenetic comparative analyses. Vespertilionidae is the largest family of bats, and has successfully colonized all 
the biogeographic regions in the world24. Most vespertilionids are insectivores, albeit some Myotis and Nyctalus 
species also capture small fishes or passerine birds25. These bats show marked diversity in wing morphology, 
resulting in remarkable differences in flight performance among species18,19,26. To test the site colonization 
hypothesis, we compiled a dataset spanning 126 vespertilionid bat species, which included range area, longitudi-
nal extent, wing morphology, migratory habit, and biogeographic realm. We quantified range area and longitudi-
nal extent for each species using distribution maps from the IUCN Red List17. Following previous research27, we 
used relative wing loading and aspect ratio as indirect measures of dispersal ability. We examined the relationship 
between wing morphology and species range size, while accounting for the effects of migratory habit and bio-
geographic realm. Since IUCN range polygons encompass the known species occurrences based on published 
literature and field surveys17, and this may underestimate the actual geographic distributions among rare and 
poorly studied species, we repeated our analyses excluding species with range areas below the 10th percentile. 
Given that bat wing morphology is associated with foraging ecology18, we also conducted additional analyses 
while controlling for foraging guild. If dispersal ability is a significant determinant of geographic range sizes in 
bats, we expected that: (1) relative wing loading would be positively related to range area and longitudinal extent; 
and (2) species with greater aspect ratios would be more geographically widespread relative to those with lower 
aspect ratios.

Results
There was considerable interspecific variation in geographic range sizes among vespertilionid bats. The smallest 
range area in our data set was 9.29 e + 4 km2, whereas the largest range area reached 2.10 e + 7 km2. The longi-
tudinal extent of species ranged from 6.08 to 156.30 degrees. A lambda model, which converts the phylogeny 
into a covariance matrix with an error term, provided the best fit when testing for the relationship among wing 
morphology, range area, and longitudinal extent (Table 1). After controlling for the effects of migration and 
biogeographic realm, relative wing loading was positively associated with range area (N = 126, R2 = 0.069, esti-
mate ± s. e. = 1.27 ± 0.51, t = 2.49, P = 0.014; Fig. 1a) and longitudinal extent (N = 126, R2 = 0.097, estimate ± s. 
e. = 0.86 ± 0.28, t = 2.99, P = 0.0033; Fig. 1b). A significant positive correlation was observed between aspect ratio 
and species range size (range area: N = 126, R2 = 0.074, estimate ± s. e. = 2.91 ± 0.99, t = 2.92, P = 0.0042; longitu-
dinal extent: N = 126, R2 = 0.083, estimate ± s. e. = 1.69 ± 0.57, t = 2.95, P = 0.0037; Fig. 1c,d). Additional analyses 
using different sample sizes yielded similar results (Tables S1-S3; Figs S1-S3).

Range size Factor Model AICc R2 Estimate P-value

Range area

RWL

BM 269.50 0.080 0.40 ± 0.63 0.52

OU 211.30 0.10 1.64 ± 0.46 0.0005

λ 209.30 0.069 1.27 ± 0.51 0.014

OLS 209.40 0.11 1.69 ± 0.45 0.0003

AR

BM 268.90 0.077 0.45 ± 0.96 0.64

OU 209.80 0.11 3.69 ± 0.99 0.0003

λ 205.50 0.074 2.91 ± 0.99 0.0042

OLS 208.10 0.11 3.73 ± 0.99 0.0002

Longitudinal extent

RWL

BM 119.60 0.096 0.32 ± 0.34 0.35

OU 71.80 0.098 0.87 ± 0.26 0.001

λ 70.80 0.097 0.86 ± 0.28 0.0033

OLS 72.50 0.098 0.88 ± 0.25 0.0009

AR

BM 118.40 0.084 0.58 ± 0.52 0.26

OU 70.40 0.098 1.89 ± 0.56 0.001

λ 69.40 0.083 1.69 ± 0.57 0.0037

OLS 72.50 0.098 0.87 ± 0.25 0.0009

Table 1.  Summary of regression models under different evolutionary scenarios. In each model, range area or 
longitudinal extent were predicted by relative wing loading (RWL) and aspect ratio (AR). The models tested 
were: Brownian motion (BM), Ornstein-Uhlenbeck (OU), lambda (λ), and ordinary least square regression 
(OLS). Estimate denotes the coefficient of regression. The best-fitting models are noted in bold.
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Discussion
The site colonization hypothesis predicts that a species’ geographic range size is shaped by its ability to disperse 
from one habitat to another7,11,12. This is the case in a broad range of organisms, including plants28, insects15,29, 
mollusks30, fishes13, amphibians31, and birds14,32. However, the relationship between dispersal ability and geo-
graphic range size is uncertain in most mammal groups. Here, we test dispersal-based hypothesis by applying a 
phylogenetic framework across a large sample of bat species at a global scale. Our comparative analyses revealed 
that the geographic range sizes of bats are positively associated with wing loading and aspect ratio, two commonly 
used indicators of dispersal ability. Bats with higher wing loading and greater aspect ratios tend to be more geo-
graphically widespread. These results provide the first evidence, to our knowledge, that dispersal ability plays a 
role in shaping geographic range size in flying mammals.

The wing morphology of bats contributes significantly to interspecific variation in geographic range size, even 
after accounting for the effects of phylogeny, migration and geographic location. This is consistent with previous 
research on mayflies and stoneflies, which have shown a positive link between forewing length and the geographic 
areas occupied by species15,33. Similarly, wing length and shape explain a large proportion of the interspecific var-
iation in range area among warblers14. In Himalayan birds, the maximum northern latitude of species’ geographic 
ranges is affected by the hand-wing index, which reflects aspect ratio on a size-independent scale34. These results 
indicate that high wing loading and aspect ratio provide an opportunity for dispersal over small and moderate 
natural barriers, enabling species to colonize diverse geographic regions across fragmented landscapes1,7,11. A 
positive feedback between species’ range expansions and evolution of wing morphology, as observed in butter-
fly35 and bush crickets36, could further accelerate range shifts. Consequently, wing morphology seems to act as an 
important factor shaping species range size in bats and other flying animals.

Biological dispersal differs from migration. While the former refers to random movement of individuals from 
one site to another, the latter comprises seasonal round-trip movement by all or part of a population37. Therefore, 
dispersal distance is not equivalent to migration distance, although they are related to each other38. Bats are capa-
ble of powered flight, allowing them to achieve long-distance dispersal over oceans, deserts, and mountains26,39. 
However, directly quantifying realized dispersal distances in bats remains a great challenge. Identifying the traits 
associated with dispersal distance would be valuable for predicting the dispersal ability of bats27. It has been 
demonstrated that wing loading influences the rate of gene flow between populations in several bat families, 
such as Vespertilionidae, Rhinolophidae, and Molossidae27,40. There is also a positive association between aspect 
ratio and maximum movement distance in some European bats19. These findings echo previous studies in other 
taxa41,42, and suggest that wing morphology can serve as a reliable indicator of dispersal ability in bats.

Figure 1.  Relationship between dispersal ability and geographic range size in vespertilionid bats. The 
scatterplots depict the relationship between (a) log10 relative wing loading and log10 range area, (b) log10 relative 
wing loading and log10 longitudinal extent, (c) log10 aspect ratio and log10 range area, and (d) log10 aspect ratio 
and log10 longitudinal extent. Lines represent the best-fitting regression models after correcting for phylogeny, 
migration, and biogeographic realm.
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Bats are important bio-indicators for global climate change43. It is still unclear whether most bats will encoun-
ter range loss and rapid decline in numbers as climate envelope models have predicted23. Field observations 
suggest that warming climates are causing some bat species to expand their ranges towards northern latitudes 
and higher elevations, e.g., great stripe-faced bats (Vampyrodes caraccioli)44, common vampire bats (Desmodus 
rotundus)44, Kuhl’s pipistrelle (Pipistrellus kuhlii)45, and Nathusius’ pipistrelle (Pipistrellus nathusii)46. However, 
some bats may remain in their current habitats due to lower dispersal ability and niche specialization22. Both of 
these scenarios involve high risks of extinction. In situ, altered climates could reach or surpass the upper limits 
of thermal tolerance, gradually causing population declines and extinction47. Additionally, range shifts in bats 
may lag behind climate change as a result of limited dispersal and multispecies interaction in the new biomes3,48. 
Long-distance dispersal through human-dominated landscapes also has negative impacts on population connec-
tivity and reproductive success49. Further research is critically needed to explore whether and how populations at 
the margins of bat distributions respond to climate change via dispersal.

In summary, we employ a phylogenetic comparative approach to elucidate the relationship between dispersal 
ability and geographic range size in vespertilionid bats. By incorporating migratory status and biogeographic 
realm, we demonstrate that wing loading and aspect ratio are significant, positive predictors of species range size, 
suggesting that dispersal ability is important in shaping the geographic ranges of vespertilionid bats. However, 
dispersal ability is not the sole determinant of range size in bats, given that wing parameters account for only 
about 7–10% of the variance in range size. Life history traits, ecological niche breadth, and anthropogenic pres-
sures may also affect a species’ successful establishment following dispersal, and thus geographic range size50. 
Investigating these factors was beyond the scope of this study. Given the robust association between species range 
size and extinction risk51,52, our findings highlight that wing morphology may inform conservation priorities for 
bat species. Coupled with previous comparative studies4,50, our findings help understand the factors that contrib-
ute to the great diversity of geographic range sizes across mammals.

Materials and Methods
Data Collection.  A total of 126 bat species from the family Vespertilionidae (Supplementary dataset) were 
selected for this study based on three criteria: (1) distribution maps could be obtained from the IUCN Red List17; 
(2) detailed phylogenetic information was available on the most recent mammal supertree53; and (3) information on 
body mass, wing loading, and aspect ratio could be collected. The average value of each morphological trait was used 
if data differed among published sources. Corynorhinus townsendii, C. rafinesquii, Neoromicia capensis, N. zuluensis, 
N. tenuipinnis, N. nana, Vespadelus regulus, V. vulturnus, V. pumilus, Pipistrellus cadornae, Pipistrellus pulveratus, 
Nycticeinops schlieffeni, and Glauconycteris variegata were regarded as synonyms of Plecotus townsendii, P. rafin-
esquii, Eptesicus capensis, E. zuluensis, E. tenuipinnis, Pipistrellus nanus, E. regulus, E. vulturnus, E. pumilus, Hypsugo 
cadornae, H. pulveratus, Nycticeius Schlieffeni, and Chalinolobus variegatus17, respectively.

We extracted species range polygons from the IUCN database17. We calculated the total area (km2) and lon-
gitudinal extent (degrees) of polygons to quantify species range size using cylindrical equal area projections50. 
Each species was assigned to the biogeographic realm covering more than 80% of its distribution range. These 
biogeographic realms were: Palearctic, Sino-Japanese, Oriental, Australian, Oceanic, Afrotropical, Neotropical, 
and Nearctic24. Species with less than 80% of their distribution range in any given realm were classified as 
cosmopolitan.

To quantify dispersal ability per species, we compiled data on wing loading, aspect ratio, and body mass from 
the literature (Supplementary dataset). We used relative wing loading (RWL = WL/body mass1/3) in our analyses 
to correct for allometric effects54. We defined migration as seasonal movements from one region to another. 
Seasonal shifts in roost use greater than 100 km were also regarded as migratory movements26. We defined migra-
tory habits as non-migration (<100 km), short-distance migration (ranged from 100 to 1,000 km), long-distance 
migration (>1,000 km), and uncertain status26. We log10-transformed the values of range size and wing morphol-
ogy to achieve a normal distribution.

Statistical Analyses.  We tested for associations between predictor factors and species range size through phy-
logenetic generalized least square (PGLS) regressions based on a pruned supertree53. Bat range size was entered into 
the regression models as a dependent variable. Relative wing loading and aspect ratio were treated as fixed predictor 
variables. Migratory habit and biogeographic realm of species were assigned as covariates. We ran PGLS regressions 
based on four different evolutionary models (Brownian motion, Ornstein-Uhlenbeck, lambda, and ordinary least 
square) using the packages nlme55 and MuMIn56. The Brownian motion model assumes that the traits change grad-
ually through time with a constant rate, the Ornstein-Uhlenbeck model fits a random walk with a deterministic 
tendency for trait values, and the lambda model represents a modification of the Brownian motion model after 
correcting for the phylogenetic covariance matrix. We chose the best regression model according to the Akaike 
information criterion corrected for small sample size (AICc)57. To verify the robustness of our results, we re-analyzed 
the data while excluding migratory species and those with range areas below the 10th percentile. We also performed 
additional analyses while incorporating information about foraging guild. All statistics were performed in R 3.3.3.

Data Availability
The datasets generated and/or analyzed during the current study are presented in the supplementary material.
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