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Outline
• Motivations for studying 3-particles

• History and status of finite-volume formalism and applications 
[References at end of slides]

• Example of recent work: QC3 for 3 spin-½ particles

• Summary & Outlook
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Will assume familiarity with QC2 (Lüscher quantization condition)
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Motivations for 
studying three particles 

using LQCD

3
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Cornucopia of exotics

4

New states

K-matrix

N/D

2

+ data from Babar, Belle, COMPASS, …
[I. Danilkin, talk at INT workshop, March 23]
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Motivations

5

• Studying resonances, most of which have decays involving 3 (or more) particles

•

•

•

• Determining 3-body “forces”

• NNN interactions needed as input for EFT treatments of large nuclei, and for 
the neutron-star equation of state

• , , … interactions needed as input to study pion & kaon condensation

• Determining electroweak decay amplitudes involving 3 (or more) particles

•

• Determine related 2-particle quantities that involve additional currents

•

ω(782, IGJPC = 0−1−−) → 3π

N(1440, JP = 1
2

+
) → Nπ, Nππ

Tcc(3875, I = 0, JP = 1+?) → D0D0π+

πππ πKK̄

K → 3π, D → 2π, KK̄, 4π, 2η, 6π, …

0 𝒥 2, 1 𝒥 2, 2 𝒥 2



/36S. Sharpe, ``Overview of 3-particle methods,” Santa Fe workshop, 8/8/23

History & status of 
formalism & 

applications for 3 
particles

6
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Problem in finite-volume QFT

iMn!m

Discrete energy 
spectrum

Scattering 
amplitudes

E0(L)

E1(L)

E2(L)
?
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Problem in finite-volume QFT

iMn!m

Discrete energy 
spectrum

Scattering 
amplitudes

E0(L)

E1(L)

E2(L)
?

Assume discretization errors small, or have been extrapolated away
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History of formalism for 3 particles
• [Beane, Detmold, Savage et al. 07-11] studied ground state energies of

 systems, and determined 3-particle interactions for 
particles at rest

• [Polejaeva & Rusetsky 12] showed in NREFT that 3 body spectrum determined 
by  &  infinite-volume scattering amplitudes

• [Hansen & SRS 14, 15] derived quantization condition (QC3) for 3 identical 
scalars in generic, relativistic EFT, working to all orders in Feynman-diagram 
expansion, keeping all angular momenta—“RFT approach”

• [Hammer & Rusetsky 17] derived QC3 using NREFT—greatly simplified 
derivation

• [Mai & Döring 17] obtained QC3 using unitary, relativistic representation of 
 amplitude—“FVU approach”

• [Blanton & SRS 20] showed equivalence of RFT & FVU approaches 

• [Müller, Pang, Rusetsky & Wu 20] relativized NREFT approach

• [Müller & Rusetsky 20; Hansen, Romero-López & SRS 21] derived formalism for 
determining  amplitude 

Nπ+, MK+, Nπ+ + MK+

2 → 2 3 → 3

3 → 3

K → 3π
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• [Mai & Döring 17] obtained QC3 using unitary, relativistic representation of 
 amplitude—“FVU approach”

• [Blanton & SRS 20] showed equivalence of RFT & FVU approaches 

• [Müller, Pang, Rusetsky & Wu 20] relativized NREFT approach

• [Müller & Rusetsky 20; Hansen, Romero-López & SRS 21] derived formalism for 
determining  amplitude 

Nπ+, MK+, Nπ+ + MK+

2 → 2 3 → 3

3 → 3

K → 3π

I will sh
ow examples using  th

e 

RFT approach
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 Two-step method

99

Quantization conditions

2 & 3 particle
Spectra from LQCD

Integral equations in
infinite volume

det [F−1 + 𝒦2]
det [F−1

3 + 𝒦df,3]

Scattering amplitude ℳ3

L

L

L

= 0

= 0

[These are the RFT
 forms, and assume

 symmetry]ℤ2

QC2:

QC3:

Incorporates initial- and
final-state interactions
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 Two-step method

99

Quantization conditions

2 & 3 particle
Spectra from LQCD

Integral equations in
infinite volume

Intermediate infinite-volume K matrix:
A short-distance, real, three-particle 
interaction free of unitary cuts, and 

with physical divergences subtracted;
unphysical since depends on cutoff

det [F−1 + 𝒦2]
det [F−1

3 + 𝒦df,3]

Scattering amplitude ℳ3

L

L

L

= 0

= 0

[These are the RFT
 forms, and assume

 symmetry]ℤ2

QC2:

QC3:

Incorporates initial- and
final-state interactions

Infinite-volume K matrix:
Obtained from Feynman diagrams 
using PV prescription for poles;

Real, free of unitary cuts
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Matrix structure in QC3

10

• All quantities are infinite-dimensional matrices with indices  describing 3 on-shell particleskℓmi

â⇤ �! `,m
(E � !k, ~P � ~k)

(!k,~k)
BOOST

[finite volume “spectator” momentum: ] x [2-particle CM angular momentum: ] x [spectator flavor: ]k = (2π /L)n ℓ, m i

• For large  (at fixed E, L), the other two particles are below threshold

• Must include such configurations, by analytic continuation, up to a cut-off at 
 [Polejaeva & Rusetsky, `12]

k

k ≈ m
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F3 collects 2-particle interactions

11

F3 =
1

2ωL3 [ F
3

− F
1

𝒦−1
2 + F + G

F]
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F3 collects 2-particle interactions

11

F3 =
1

2ωL3 [ F
3

− F
1

𝒦−1
2 + F + G

F]
p

k

�
k k
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F3 collects 2-particle interactions

12

F3 =
1

2ωL3 [ F
3

− F
1

𝒦−1
2 + F + G

F]
•  &  are known geometrical functions, containing cutoff function  F G H(k)

Gpℓ′ m′ ;kℓm = ( k*
q*p )

ℓ′ 
4πYℓ′ m′ ( ̂k*)H( ⃗p)H( ⃗k)Y*ℓm( ̂p*)

(P − k − p)2 − m2 ( p*
q*k )

ℓ
1

2ωkL3
Relativistic form 

introduced in [BHS17]

Fpℓ′ m′ ;kℓm = δpk H( ⃗k) FPV,ℓ′ m′ ;ℓm(E − ωk, ⃗P − ⃗k, L)

FPV;ℓ′ m′ ;ℓm(E, ⃗P , L) =
1
2

1
L3 ∑⃗

k

− PV ∫
d3k

(2π)3

𝒴ℓ′ m′ ( ⃗k*)𝒴*ℓm( ⃗k*) h( ⃗k)
2ωk2ωP−k(E − ωk − ωP−k)

𝒴ℓm( ⃗k*) = 4π ( k*
q* )

ℓ

Yℓm( ̂k*)
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Divergence-free K matrix

13

det [F3(E, ⃗P , L)−1 + 𝒦df,3(E*)] = 0

What is this? A quasi-local divergence-free 3-particle interaction
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Divergence-free K matrix

13

det [F3(E, ⃗P , L)−1 + 𝒦df,3(E*)] = 0

What is this? A quasi-local divergence-free 3-particle interaction

iM3!3 ⌘ fully connected correlator with  
six external legs amputated and projected on shell

Three-to-three amplitude has kinematic singularities!

[Artwork from Hansen, HMI lectures]

Certain external momenta 
 put this on-shell!= + · · ·
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Divergence-free K matrix

13

det [F3(E, ⃗P , L)−1 + 𝒦df,3(E*)] = 0

What is this? A quasi-local divergence-free 3-particle interaction

iM3!3 ⌘ fully connected correlator with  
six external legs amputated and projected on shell

Three-to-three amplitude has kinematic singularities!

[Artwork from Hansen, HMI lectures]

Certain external momenta 
 put this on-shell!= + · · ·

• To have a nonsingular (divergence-free) quantity, need to subtract pole

• To obtain  also remove branch points associated with all cuts

•  has the same symmetries as , but depends on a cutoff function

𝒦df,3

𝒦df,3 ℳdf,3
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Status: formalism
• 3 identical spinless particles [Hansen & SRS 14,15 (RFT); Hammer, Pang, Rusetsky 17 

(NREFT); Mai, Döring 17 (FVU)]

• Potential applications:  as well as  theory

• Mixing of two- and three-particle channels for identical spinless particles [Briceño, 
Hansen, SRS 17]

• Potential applications: Step on the way to , etc.

• 3 degenerate but distinguishable spinless particles, e.g  with isospin 0, 1, 2, 3 
[Hansen, Romero-López, SRS 20];  case in FVU approach [Mai et al., 21]

• Potential applications: 

3π+, 3K+, 3D+, … ϕ4

N(1440) → Nπ, Nππ

3π
I = 1

Resonance Ifififi JP Irrep (P = 0) 3fi orbit
Ê(782) 0 1≠ T ≠

1 4
h1(1170) 0 1+ T +

1 2
Ê3(1670) 0 3≠ A≠

2 4
fi(1300) 1 0≠ A≠

1 1
a1(1260) 1 1+ T +

1 2
fi1(1400) 1 1≠ T ≠

1 4
fi2(1670) 1 2≠ E≠ and T ≠

2 2
a2(1320) 1 2+ E+ and T +

2 3
a4(1970) 1 4+ A+

1 16

Table 4: Lowest lying resonances with negative G-parity, and which couple to three
pions, in the di�erent isospin and JP channels. The fourth column shows the cubic group
irreps that are subduced from the rotation group irreps, assuming that the resonance is

at rest (P = 0). The final column gives the lowest three-pion momentum orbit that
contains the corresponding cubic group irrep, again assuming P = 0.

as in the previous section, this is an infinite-volume exercise. When using the resulting
forms for K[I]

df,3 in the quantization condition, one must covert the forms given here to the
k¸m index set introduced above. This is a straightforward exercise that we do not discuss
further here.

By analogy with the two-particle case, we expect that a three-particle resonance can
be represented by a pole in the part of K[I]

df,3 with the appropriate quantum numbers [20],
i.e.

K[I,|‰Í]
df,3 = K

X

df,3
cX

s ≠ M2
X

+ O
#
(s ≠ M2

X)0$
, (3.31)

where the superscript |‰Í on the left-hand side emphasizes that we work in the basis of
definite symmetry states for Ifififi = 1 (see also appendix C). On the right-hand side,X
labels the quantum numbers, MX is close to the resonance mass (at least in the case of
narrow resonances), the real constant cX is related to the width of the resonance, and
K

X

df,3 carries the overall quantum numbers. The precise relationship of cX and MX to
the resonance parameters in M3 is not known analytically, since determining M3 requires
solving the non-trivial integral equations discussed above.

We stress that, once a form for K
X

df,3 is known, only one sign of cX will lead to a
resonance pole with the physical sign for the residue. The correct choice can be identified by
requiring that the finite-volume correlator CL has a single pole with the correct residue [20,
22]. In the limit cX æ 0, one recovers an additional decoupled state in the finite-volume
spectrum at energy E = MX (assuming P = 0), corresponding to a stable would-be
resonance. The form in eq. (3.31) was proposed in ref. [20] for the case of identical scalars
(which is equivalent to the Ifififi = 3 channel here) for which K

X

df,3 is a constant. As noted
above, however, there are no resonances in nature in the Ifififi = 3 or Ifififi = 2 channels, so
the example given in ref. [20] is for illustrative purposes only. In the following we determine

– 28 –

Decays

π+π0π−

ρπ → 3π
3π, 5π

ρπ → 3π
3π, KK̄π
ηπ, 3π?
3π, KK̄π
3π, KK̄, 5π, ηπ
3π, KK̄, 5π, ηπ
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Status: formalism (continued)
• 3 nondegenerate spinless particles [Blanton, SRS 20]

• Potential applications:  

• 2 identical +1 different spinless particles [Blanton, SRS 21]

• Potential applications: 

• 3 identical spin-½ particles [Draper, Hansen, Romero-López, SRS 23]

• Potential applications: 

•  for all isospins (also ) [Draper, Hansen, Romero-López, SRS 23; talk 
by Fernando]

• Potential applications:  incorporating LH cut

D+
s D0π−

π+π+K+, K+K+π+

3n, 3p, 3Λ

DDπ BBπ, KKπ

Tcc → D*D
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• : determined parameters in threshold expansion of , including pair interactions in s- 
and d-waves; integral equations solved for s-wave interactions only [Talk by Raúl]

• : determined s- and d-wave parameters in 

• : extracted  in single-scalar theory; extracted 3-particle resonance parameters in 
two-scalar theory, using RFT and FVU approaches [Talk by Fernando]

•  with : first study of  with formalism based on 2 levels; solved integral 
equations in FVU approach

•  & : determined s- and p-wave parameters in ; found evidence for 
small discretization effects [Talk by Fernando]

• Integral equations solved for complex energies for simple system with near-unitary two-
particle interactions and Efimov states (bound or resonant) [Talk by Raúl]

• ChPT: LO results for , , , , including  effects: agree in rough 
magnitude but not in detail with results from LQCD calculations [Talk by Fernando]

• ChPT: NLO result for ; greatly improves agreement with LQCD results [Talk by 
Fernando]

3π+ 𝒦df,3

3K+ 𝒦df,3

ϕ4 𝒦df,3

3π I = 1 a1(1260)

π+π+K+ K+K+π+ 𝒦df,3

3π+ π+π+K+ K+K+π+ 3K+ a2

3π+

16

Status: applications
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QC3 for identical spin-½ 
particles  

17

Prepared for submission to JHEP MIT-CTP/5539

Three relativistic neutrons in a finite volume

Zachary T. Draper
a

, Maxwell T. Hansen
b

, Fernando Romero-López
c

,

and Stephen R. Sharpe
a

aPhysics Department, University of Washington, Seattle, WA 98195-1560, USA
bSchool of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, UK
cCTP, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
E-mail: ztd@uw.edu, maxwell.hansen@ed.ac.uk, fernando@mit.edu,
srsharpe@uw.edu

Abstract: We generalize the relativistic field-theoretic (RFT) three-particle finite-volume
formalism to systems of three identical, massive, spin-1/2 fermions, such as three neutrons.
This allows, in principle, for the determination of the three-neutron interaction from the
finite-volume spectrum of three-neutron states, which can be obtained from lattice QCD
calculations.

arXiv:2303.10219 (JHEP)
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Motivation
• Determine 3 neutron interaction from first principles using LQCD

• Important for neutron star EoS, heavy nuclei, …

• Incorporating spin into 3-particle formalism in a simple setting

• Extensions to 3 nucleon interactions in isosymmetric QCD should be straightforward

• Important step on the way to studying Roper: 

• Want relativistic approach since, for heavier than physical pions, the first 
inelastic threshold (where the formalism breaks down) can occur for 
relativistic nucleons

• And for future applications such as the Roper, relativistic effects needed

N(1440) → πN, ππN

18
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New features for spin ½

19

• Extra spin degree of freedom—gives extra matrix indices

• Total spin is conserved in NR limit; no longer true in relativistic system, due to Wigner 
rotations induced by boosts

𝒦2

𝒦2

Interactions in moving frames
can flip spins

• Antisymmetry of states due to Fermi statistics

• Inclusion of spin is much more complicated than for 2-particle QC [Briceño]
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3-particle coordinates

20

• 3 scalars with total momentum (E, ⃗P )

• In finite volume,   matrix indices  

• What changes when include spin?

⃗k = (2π/L)ℤ3 ⇒ {k, ℓ, m}

[  of  the spectator] x [  of  the “pair” or “dimer”]⃗k ℓm

(ωa, ⃗a )Lab or
“Finite-volume”
frame

Pair CM
frameb

b*
a*

k*

̂a*

̂b* = − ̂a*
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Describing spin ½ states

21

• Standard moving spin states: boost from CMF; corresponds to spinor u(p, s)

spin-1/2 particles. This allows us to e�ciently summarize the new derivation, first, in
section 3.3, for the simplest contributing classes of diagrams, and then, in section 3.3.3,
extending to all orders. The final result in then presented in the following section, section 4.

3.1 Three-body spin states in a relativistic formalism

We begin with a discussion of the construction of spin states in a relativistic framework, and
the transformation properties of such states under Lorentz boosts. An extended discussion
on this can be found, e.g., in ref. [86].

We start by considering the states of a particle at rest, with mass m, spin s and
azimuthal component ms. The states are denoted by |s msÍ where, as usual, we take ẑ as
the quantization axis. These states transform in the usual way under a general rotation R,

U(R) |s msÍ = |s mÕ
sÍ D

(s)
mÕ

s,ms
(R) , (3.1)

where U(R) is the unitary operator corresponding to R, D
(s)
mÕ

s,ms
(R) is the Wigner matrix

for angular momentum s, and there is an implicit sum over mÕ
s. We then construct states

with nonzero momentum p as

|p, s msÍ = U(L(—p)) |s msÍ , (3.2)

where L(—p) is a pure boost with velocity —p = p/Êp, with Êp =


p2 + m2, such that
the boosted state has four-momentum pµ = (Êp, p). In this way, |p, s msÍ is defined unam-
biguously without specifying a quantization axis in the moving frame. This is referred to
as the standard basis and corresponds in the spin-1/2 case precisely to the state with the
spinor u(p, ms).

The boost in eq. (3.2) can be represented as

L(—p) = R(◊p, n̂p) · L(—pẑ) · R(◊p, n̂p)≠1, (3.3)

where R(◊p, n̂p) is a rotation that takes a vector in the z-direction to point along the indi-
cated momentum, i.e. p̂ = R(◊p, n̂p)ẑ. Here n̂p defines the axis about which the rotation
is performed and ◊p is the rotation angle. Using this representation, it is straightforward
to determine the transformation of the states in eq. (3.2) under rotations to be

U(R) |p, s msÍ = |Rp, s mÕ
sÍ D

(s)
mÕ

s,ms
(R) . (3.4)

This is advantageous as it is equivalent to the transformations of a nonrelativistic spin
state.

The transformation of the states in eq. (3.2) under boosts requires some additional
discussion. This is due to the fact that the azimuthal component of the spin does not
remain unchanged under a generic boost. Consider the transformation

U(L(—k)) |p, s msÍ = U(L(—k))U(L(—p)) |s msÍ , (3.5)

with —k a generic velocity. To work this out, we can use the well-known result that the
product of two boosts is equal to the combination of a single boost and a rotation,

L(—k)L(—p) = L(—Õ)R(◊, n̂). (3.6)

– 7 –

≡ | p, ms( p)⟩ for spin ½

• Key property: rotates as nonrelativistic 2-component spinor

spin-1/2 particles. This allows us to e�ciently summarize the new derivation, first, in
section 3.3, for the simplest contributing classes of diagrams, and then, in section 3.3.3,
extending to all orders. The final result in then presented in the following section, section 4.

3.1 Three-body spin states in a relativistic formalism

We begin with a discussion of the construction of spin states in a relativistic framework, and
the transformation properties of such states under Lorentz boosts. An extended discussion
on this can be found, e.g., in ref. [86].

We start by considering the states of a particle at rest, with mass m, spin s and
azimuthal component ms. The states are denoted by |s msÍ where, as usual, we take ẑ as
the quantization axis. These states transform in the usual way under a general rotation R,

U(R) |s msÍ = |s mÕ
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s,ms
(R) , (3.1)

where U(R) is the unitary operator corresponding to R, D
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mÕ

s,ms
(R) is the Wigner matrix

for angular momentum s, and there is an implicit sum over mÕ
s. We then construct states

with nonzero momentum p as

|p, s msÍ = U(L(—p)) |s msÍ , (3.2)

where L(—p) is a pure boost with velocity —p = p/Êp, with Êp =


p2 + m2, such that
the boosted state has four-momentum pµ = (Êp, p). In this way, |p, s msÍ is defined unam-
biguously without specifying a quantization axis in the moving frame. This is referred to
as the standard basis and corresponds in the spin-1/2 case precisely to the state with the
spinor u(p, ms).

The boost in eq. (3.2) can be represented as

L(—p) = R(◊p, n̂p) · L(—pẑ) · R(◊p, n̂p)≠1, (3.3)

where R(◊p, n̂p) is a rotation that takes a vector in the z-direction to point along the indi-
cated momentum, i.e. p̂ = R(◊p, n̂p)ẑ. Here n̂p defines the axis about which the rotation
is performed and ◊p is the rotation angle. Using this representation, it is straightforward
to determine the transformation of the states in eq. (3.2) under rotations to be

U(R) |p, s msÍ = |Rp, s mÕ
sÍ D

(s)
mÕ

s,ms
(R) . (3.4)

This is advantageous as it is equivalent to the transformations of a nonrelativistic spin
state.

The transformation of the states in eq. (3.2) under boosts requires some additional
discussion. This is due to the fact that the azimuthal component of the spin does not
remain unchanged under a generic boost. Consider the transformation

U(L(—k)) |p, s msÍ = U(L(—k))U(L(—p)) |s msÍ , (3.5)

with —k a generic velocity. To work this out, we can use the well-known result that the
product of two boosts is equal to the combination of a single boost and a rotation,

L(—k)L(—p) = L(—Õ)R(◊, n̂). (3.6)

– 7 –

• Lab-frame description of 3 spin-½ particles (lab-axis frame)

| p, sms⟩ = U(L(βp)) |0, sms⟩

|k, ms(k)⟩ ⊗ |a, ms(a)⟩ ⊗ |b, ms(b)⟩

k

a

b

• Natural choice for 

• Collect spin indices into vector:  

𝒦df,3

ms = (ms(k), ms(a), ms(b))
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• Natural choice for , and for QC3

• Collect spin indices into vector:  

𝒦2

m*s = (ms(k), ms(a*), ms(b*))

Describing spin ½ states

22

• To combine spins of pair with orbital angular momentum , need a & b in pair CMFℓ

• Thus introduce dimer-axis frame spin indices

• Relation between spin components involves Wigner rotations, e.g.

|a*, ms(a*)⟩ ≡ U(L(βa*)) |0, ms⟩ and |b*, ms(b*)⟩ ≡ U(L(βb*)) |0, ms⟩

|k, ms(k)⟩ ⊗ |a*, ms(a*)⟩ ⊗ |b*, ms(b*)⟩
k*

a*
b*

|a*, ms(a)⟩ ≡ U(L(−βP−k)) |a, ms(a)⟩

= U(L(−βP−k))U(L(βa)) |0, ms⟩

= U(L(βa*))U(Ra)) |0, ms⟩

= |a*, m′ s(a*)⟩𝒟(Ra)m′ sms

Wigner rotation

Spin ½ Wigner D-matrix
representing 

Wigner rotation
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Impact on G

23

p

k

b

det [F−1
3 (E, P, L) + 𝒦df,3(E*)] = 0 F3 =

F
3

− F
1

𝒦−1
2,L + F + G

F

• Arises when spectator is switched

• Spin components conserved in lab frame

ΔL,αβ(b) = i
(/b + m)αβ

b2 − m2 + iϵ
+ RL,αβ(b)

Fully dressed propagator Nonsingular residue

(/b + m)αβ
b0=ωb

=
2

∑
r=1

ur
α(b)ur

β(b)

• Leads to Wigner D-matrices when express in dimer-axis frame

labeled b in figure 1(c). The exact definition makes use of momentum coordinates in the
two-particle CMFof the scattering pair, both before and after the switch. Specifically we
define kú

p [pú
k] as the spatial part of the four-momentum arising from boosting kµ = (Êk, k)

[pµ = (Êp, p)] with boost velocity ≠—P ≠p [≠—P ≠k]. In addition to the momenta, we
require the two-particle CMFenergy Eú

2,k, defined in eq. (2.2), and the analogous quantity
Eú

2,p obtained by replacing k with p. From these one can define the on-shell two-particle
CMFmomentum qú

2,k and qú
2,p using eq. (2.6).

We are now ready to give the lab-frame axis version of G for three spin-half particles:

[Glab]p¸ÕmÕmÕ
s;k¸mms(E, P , L) © ≠”mÕ

s(p),ms(p)”mÕ
s(k),ms(k)”mÕ

s(b),ms(b)

◊
i

4ÊpÊkL6
H(p)H(k)

b2 ≠ m2
4fiY¸ÕmÕ(kú

p)Yú
¸m(pú

k)
qú¸Õ

2,p qú¸
2,k

, (3.27)

where Y¸m(x) = |x|
¸Y¸m(x̂) is a harmonic polynomial, and

b2 = (E ≠ Êk ≠ Êp)2
≠ (P ≠ p ≠ k)2 . (3.28)

The smooth cuto� function H(k) was already introduced in eq. (2.5). In the context of
three neutrons, we note that the allowed support for the H function is set by the left-hand
cut arising from t-channel pion exchange in the two-neutron amplitude. A similar situation
is discussed in refs. [48, 64] in the context of the RFT formalism for Kfifi and KKfi, see
also ref. [87]. Relative to the spin-zero G function discussed in section 2 [see the explanation
above eq. (2.7)], the definition (3.27) contains an extra factor of i/(2ÊpL3), matching the
conventions of ref. [39].

There are two key new features relative to the form for spin-zero particles. The first is
the overall minus sign. This results from the antisymmetry of the fermionic multi-particle
state or, equivalently, from the anti-commutation of Grassmann variables in evaluating
Feynman diagrams. This is discussed in more detail in section 3.3.2 below.

The second new feature is the appearance of a product of Kronecker deltas in the spin
components. This encodes the fact that, for spin components defined in the lab frame, G

simply acts like an identity matrix in spin space, a point that will be discussed further in
section 3.3.1. Strictly speaking this only holds when all three particles are on shell, which
is not the case in general: although k and p are on shell by construction, b is not. This
is potentially problematic because the lab-frame state |b, ms(b)Í, given by eq. (3.11), is
defined only for on-shell four-momenta. In particular, the boost velocity used to define the
state is —b © b/Êb, even though b0

”= Êb in general. The resolution to this issue is that all
that matters for the derivation of the quantization condition is that the choice of state is
correct on shell, i.e. at the pole where b2 = m2. Choices that di�er o� shell lead to finite
shifts in Kdf,3, since the di�erences cancel the pole.

We stress that the Kronecker deltas in eq. (3.27) cannot be written as ”mÕ
sms , because

the order of spin components in the compound labels does not match:

mÕ
s =

!
ms(p), ms(k), ms(b)

"
, ms =

!
ms(k), ms(p), ms(b)

"
. (3.29)
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Non-trivial spin structure arises when we transform to the dimer-axis frame. The
transformation is similar to that for Kdf,3 discussed in the previous subsection,

Gp¸ÕmÕmÕú
s ;k¸mmú

s
= D

(p,k)†
mÕú

s mÕÕ
s

G
lab
p¸ÕmÕmÕÕ

s ;k¸mmÕÕÕ
s

D
(k,p)
mÕÕÕ

s mú
s

, (3.30)

where mÕÕ
s and mÕÕÕ

s are summed.
The change of basis matrices are given explicitly by

D
(k,p)
mÕÕÕ

s mú
s

= ”mÕÕÕ
s (k)ms(k)D(R≠1

p )mÕÕÕ
s (p)ms(pú)D(R≠1

bk
)mÕÕÕ

s (bk)ms(bú
k) , (3.31)

D
(p,k)
mÕÕÕ

s mú
s

= ”mÕÕÕ
s (p)ms(p)D(R≠1

k )mÕÕÕ
s (k)ms(kú)D(R≠1

bp
)mÕÕÕ

s (bp)ms(bú
p) . (3.32)

These depend on a total of four rotations, denoted by Rp, Rbk
, Rk and Rbp as shown. Each

of the four is induced by relating two successive boosts to a single boost, via eq. (3.6).
Thus all rotations can be expressed according to eq. (3.9). Specifically, we define

Rp : n̂ = ≠
—P ≠k ◊ —p

|—P ≠k ◊ —p|
, cos ◊ =

(1 + “p + “P ≠k + “Õ
P ≠k,p)2

(1 + “p)(1 + “P ≠k)(1 + “Õ
P ≠k,p) ≠ 1 , (3.33)

Rk : n̂ = ≠
—P ≠p ◊ —k

|—P ≠p ◊ —k|
, cos ◊ =

(1 + “k + “P ≠p + “Õ
P ≠p,k)2

(1 + “k)(1 + “P ≠p)(1 + “Õ
P ≠p,k) ≠ 1 , (3.34)

where

“Õ
P ≠k,p = “P ≠k“p(1 ≠ —P ≠k · —p) , “Õ

P ≠p,k = “P ≠p“k(1 ≠ —P ≠p · —k) . (3.35)

Rbk
is defined as for Rp, but with —p replaced by —b = b/Êb, and “p replaced by “b =Ò

1/(1 ≠ —2
b ). Similarly, Rbp is defined as for Rk, but with —p replaced by —b and “k

replaced by “b. As noted above, since b is o� shell in general, the choice of boost velocities
is only unambiguous at the on-shell point. Any o�-shell extension choice that is used
consistently is su�cient to perform the derivation, and our choice here is to use —b = b/Êb

rather than, say, b/b0.

3.2.3 F

We next turn to the kinematic function F , which implements the sum-integral di�erence for
a loop involving two of the three-particles. The definition in the lab-axis frame is obtained
from the standard form for F for scalar particles by adding Kronecker deltas in spin space,

[Flab]kÕ¸ÕmÕmÕ
s;k¸mms(E, P , L) © ”mÕ

sms”kÕk
iH(k)
2ÊkL3

1
2

5 1
L3

ÿ

a

≠p.v.
⁄

a

6

◊
4fiY¸ÕmÕ(aú

k)Yú
¸m(aú

k)
2Êa(b2 ≠ m2)

1
(qú

2,k)¸+¸Õ , (3.36)

where here the order of the compound spin indices do match, such that we can use

”mÕ
sms = ”mÕ

s(k)ms(k)”mÕ
s(a)ms(a)”mÕ

s(b)ms(b) . (3.37)
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Sign from Fermi
Statistics

Product of two Wigner 
D-matrices (one for each

Member of pair)

Spin indices match
in lab frame
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F3 =
F
3

− F
1

𝒦−1
2,L + F + G

F

Impact on F

24

det [F−1
3 (E, P, L) + 𝒦df,3(E*)] = 0

Non-trivial spin structure arises when we transform to the dimer-axis frame. The
transformation is similar to that for Kdf,3 discussed in the previous subsection,

Gp¸ÕmÕmÕú
s ;k¸mmú

s
= D

(p,k)†
mÕú

s mÕÕ
s

G
lab
p¸ÕmÕmÕÕ

s ;k¸mmÕÕÕ
s

D
(k,p)
mÕÕÕ

s mú
s

, (3.30)

where mÕÕ
s and mÕÕÕ

s are summed.
The change of basis matrices are given explicitly by

D
(k,p)
mÕÕÕ

s mú
s

= ”mÕÕÕ
s (k)ms(k)D(R≠1

p )mÕÕÕ
s (p)ms(pú)D(R≠1

bk
)mÕÕÕ

s (bk)ms(bú
k) , (3.31)

D
(p,k)
mÕÕÕ

s mú
s

= ”mÕÕÕ
s (p)ms(p)D(R≠1

k )mÕÕÕ
s (k)ms(kú)D(R≠1

bp
)mÕÕÕ

s (bp)ms(bú
p) . (3.32)

These depend on a total of four rotations, denoted by Rp, Rbk
, Rk and Rbp as shown. Each

of the four is induced by relating two successive boosts to a single boost, via eq. (3.6).
Thus all rotations can be expressed according to eq. (3.9). Specifically, we define

Rp : n̂ = ≠
—P ≠k ◊ —p

|—P ≠k ◊ —p|
, cos ◊ =

(1 + “p + “P ≠k + “Õ
P ≠k,p)2

(1 + “p)(1 + “P ≠k)(1 + “Õ
P ≠k,p) ≠ 1 , (3.33)

Rk : n̂ = ≠
—P ≠p ◊ —k

|—P ≠p ◊ —k|
, cos ◊ =

(1 + “k + “P ≠p + “Õ
P ≠p,k)2

(1 + “k)(1 + “P ≠p)(1 + “Õ
P ≠p,k) ≠ 1 , (3.34)

where

“Õ
P ≠k,p = “P ≠k“p(1 ≠ —P ≠k · —p) , “Õ

P ≠p,k = “P ≠p“k(1 ≠ —P ≠p · —k) . (3.35)

Rbk
is defined as for Rp, but with —p replaced by —b = b/Êb, and “p replaced by “b =Ò

1/(1 ≠ —2
b ). Similarly, Rbp is defined as for Rk, but with —p replaced by —b and “k

replaced by “b. As noted above, since b is o� shell in general, the choice of boost velocities
is only unambiguous at the on-shell point. Any o�-shell extension choice that is used
consistently is su�cient to perform the derivation, and our choice here is to use —b = b/Êb

rather than, say, b/b0.

3.2.3 F

We next turn to the kinematic function F , which implements the sum-integral di�erence for
a loop involving two of the three-particles. The definition in the lab-axis frame is obtained
from the standard form for F for scalar particles by adding Kronecker deltas in spin space,

[Flab]kÕ¸ÕmÕmÕ
s;k¸mms(E, P , L) © ”mÕ

sms”kÕk
iH(k)
2ÊkL3

1
2

5 1
L3

ÿ

a

≠p.v.
⁄

a

6

◊
4fiY¸ÕmÕ(aú

k)Yú
¸m(aú

k)
2Êa(b2 ≠ m2)

1
(qú

2,k)¸+¸Õ , (3.36)

where here the order of the compound spin indices do match, such that we can use

”mÕ
sms = ”mÕ

s(k)ms(k)”mÕ
s(a)ms(a)”mÕ

s(b)ms(b) . (3.37)
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This definition of F di�ers from that for scalar particles, given in eqs. (22-24) of ref. [25],
by a factor of i/(2ÊkL3), as well as by the addition of the spin factors, and thus follows
the normalization conventions of ref. [39].

The quantities in eq. (3.36) are defined as follows. The four-momentum b is given by
bµ = (E ≠ Êk ≠ Êa, P ≠ k ≠ a), while the on-shell magnitude qú

2,k is defined in eq. (2.6).
Following the usual pattern, aú

k is the spatial part of the four-momentum resulting from
boosting aµ = (Êa, a) with boost velocity ≠—P ≠k. The sum runs over values of a = 2fina/L

where na is a three-vector of integers. The notation p.v. indicates a principal value pole
prescription, including the possible extensions discussed in ref. [38]. Finally, it is understood
that an ultraviolet cuto� must be included to evaluate the sum and integral separately.
Any dependence on the cuto� vanishes in the di�erence as can be shown using the Poisson
summation formula. The numerical evaluation of the sum-integral di�erence is discussed
in more detail, e.g., in appendix B of ref. [32] and also in appendix B of ref. [34].

As with G, this quantity must reflect the exchange properties of identical fermions. One
aspect of this is the symmetry factor of 1/2 for the ab loop, which is present exactly as in the
spin-zero case. To understand additional consequences, in particular of the antisymmetry,
it is useful to transition from the lab-axis frame and dimer-axis frame. However, in this
case there is no distinction

F = F
lab . (3.38)

This is an important simplification as the change of basis matrices would in fact depend
on the summed coordinate. However, since F

lab is diagonal in spectator momentum, the
dimer frame is the same in the initial and final states. As a result the change of basis
matrices exactly cancel.

3.2.4 K2

The final building block is the two-particle K matrix. This quantity is naturally defined in
the dimer-axis frame, and we discuss only this version of the K matrix. It can be written
in a manner analogous to that for scalars, eq. (2.4),

[K2]kÕ¸ÕmÕmÕú
s ;k¸mmú

s
(E, P ) = i”kÕk2ÊkL3

K
(¸ÕmÕmÕú

s ,¸mmú
s)

2 (Eú
2,k) , (3.39)

with K
( ··· )
2 (Eú

2,k) on the right-hand side a generalization of the quantity K
(¸)
2 (Eú

2) in eq. (2.4)
to the case of spin one-half particles, with the additional factor of i2ÊkL3 to match the
convention in ref. [39]. As above, the superscripts mú

s and mÕú
s indicate that the spin

quantization axis is defined in the two-particle CMF. The role of the spectator here is
trivial and the K matrix can be unpacked as

K
(¸ÕmÕmÕú

s ,¸mmú
s)

2 (Eú
2,k) = ”mÕ

s(k)ms(k) K
[¸ÕmÕmÕ

s(aÕú)mÕ
s(bÕú)], [¸mms(aú)ms(bú)]

2 (Eú
2,k) . (3.40)

In words, the incoming state is labeled with orbital angular momentum ¸, m together with
spin components ms(aú) and ms(bú), and the outgoing state carries the same set with
primes as indicated.

To parametrize K2, it is more common to work in the basis which diagonalizes the
total spin of the dimer, s. This can take the values s = 0 (spin singlet) or s = 1 (spin

– 14 –

�
k′ 

b b

a a

k′ k k
Spin indices match

in lab frame

Wigner D-matrices cancel
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Impact on 𝒦2

25

det [F−1
3 (E, P, L) + 𝒦df,3(E*)] = 0 F3 =

F
3

− F
1

𝒦−1
2,L + F + G

F

This definition of F di�ers from that for scalar particles, given in eqs. (22-24) of ref. [25],
by a factor of i/(2ÊkL3), as well as by the addition of the spin factors, and thus follows
the normalization conventions of ref. [39].

The quantities in eq. (3.36) are defined as follows. The four-momentum b is given by
bµ = (E ≠ Êk ≠ Êa, P ≠ k ≠ a), while the on-shell magnitude qú

2,k is defined in eq. (2.6).
Following the usual pattern, aú

k is the spatial part of the four-momentum resulting from
boosting aµ = (Êa, a) with boost velocity ≠—P ≠k. The sum runs over values of a = 2fina/L

where na is a three-vector of integers. The notation p.v. indicates a principal value pole
prescription, including the possible extensions discussed in ref. [38]. Finally, it is understood
that an ultraviolet cuto� must be included to evaluate the sum and integral separately.
Any dependence on the cuto� vanishes in the di�erence as can be shown using the Poisson
summation formula. The numerical evaluation of the sum-integral di�erence is discussed
in more detail, e.g., in appendix B of ref. [32] and also in appendix B of ref. [34].

As with G, this quantity must reflect the exchange properties of identical fermions. One
aspect of this is the symmetry factor of 1/2 for the ab loop, which is present exactly as in the
spin-zero case. To understand additional consequences, in particular of the antisymmetry,
it is useful to transition from the lab-axis frame and dimer-axis frame. However, in this
case there is no distinction

F = F
lab . (3.38)

This is an important simplification as the change of basis matrices would in fact depend
on the summed coordinate. However, since F

lab is diagonal in spectator momentum, the
dimer frame is the same in the initial and final states. As a result the change of basis
matrices exactly cancel.

3.2.4 K2

The final building block is the two-particle K matrix. This quantity is naturally defined in
the dimer-axis frame, and we discuss only this version of the K matrix. It can be written
in a manner analogous to that for scalars, eq. (2.4),

[K2]kÕ¸ÕmÕmÕú
s ;k¸mmú

s
(E, P ) = i”kÕk2ÊkL3

K
(¸ÕmÕmÕú

s ,¸mmú
s)

2 (Eú
2,k) , (3.39)

with K
( ··· )
2 (Eú

2,k) on the right-hand side a generalization of the quantity K
(¸)
2 (Eú

2) in eq. (2.4)
to the case of spin one-half particles, with the additional factor of i2ÊkL3 to match the
convention in ref. [39]. As above, the superscripts mú

s and mÕú
s indicate that the spin

quantization axis is defined in the two-particle CMF. The role of the spectator here is
trivial and the K matrix can be unpacked as

K
(¸ÕmÕmÕú

s ,¸mmú
s)

2 (Eú
2,k) = ”mÕ

s(k)ms(k) K
[¸ÕmÕmÕ

s(aÕú)mÕ
s(bÕú)], [¸mms(aú)ms(bú)]

2 (Eú
2,k) . (3.40)

In words, the incoming state is labeled with orbital angular momentum ¸, m together with
spin components ms(aú) and ms(bú), and the outgoing state carries the same set with
primes as indicated.

To parametrize K2, it is more common to work in the basis which diagonalizes the
total spin of the dimer, s. This can take the values s = 0 (spin singlet) or s = 1 (spin
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• Naturally expressed in dimer-axis frame

This definition of F di�ers from that for scalar particles, given in eqs. (22-24) of ref. [25],
by a factor of i/(2ÊkL3), as well as by the addition of the spin factors, and thus follows
the normalization conventions of ref. [39].

The quantities in eq. (3.36) are defined as follows. The four-momentum b is given by
bµ = (E ≠ Êk ≠ Êa, P ≠ k ≠ a), while the on-shell magnitude qú

2,k is defined in eq. (2.6).
Following the usual pattern, aú

k is the spatial part of the four-momentum resulting from
boosting aµ = (Êa, a) with boost velocity ≠—P ≠k. The sum runs over values of a = 2fina/L

where na is a three-vector of integers. The notation p.v. indicates a principal value pole
prescription, including the possible extensions discussed in ref. [38]. Finally, it is understood
that an ultraviolet cuto� must be included to evaluate the sum and integral separately.
Any dependence on the cuto� vanishes in the di�erence as can be shown using the Poisson
summation formula. The numerical evaluation of the sum-integral di�erence is discussed
in more detail, e.g., in appendix B of ref. [32] and also in appendix B of ref. [34].

As with G, this quantity must reflect the exchange properties of identical fermions. One
aspect of this is the symmetry factor of 1/2 for the ab loop, which is present exactly as in the
spin-zero case. To understand additional consequences, in particular of the antisymmetry,
it is useful to transition from the lab-axis frame and dimer-axis frame. However, in this
case there is no distinction

F = F
lab . (3.38)

This is an important simplification as the change of basis matrices would in fact depend
on the summed coordinate. However, since F

lab is diagonal in spectator momentum, the
dimer frame is the same in the initial and final states. As a result the change of basis
matrices exactly cancel.

3.2.4 K2

The final building block is the two-particle K matrix. This quantity is naturally defined in
the dimer-axis frame, and we discuss only this version of the K matrix. It can be written
in a manner analogous to that for scalars, eq. (2.4),

[K2]kÕ¸ÕmÕmÕú
s ;k¸mmú

s
(E, P ) = i”kÕk2ÊkL3

K
(¸ÕmÕmÕú

s ,¸mmú
s)

2 (Eú
2,k) , (3.39)

with K
( ··· )
2 (Eú

2,k) on the right-hand side a generalization of the quantity K
(¸)
2 (Eú

2) in eq. (2.4)
to the case of spin one-half particles, with the additional factor of i2ÊkL3 to match the
convention in ref. [39]. As above, the superscripts mú

s and mÕú
s indicate that the spin

quantization axis is defined in the two-particle CMF. The role of the spectator here is
trivial and the K matrix can be unpacked as

K
(¸ÕmÕmÕú

s ,¸mmú
s)

2 (Eú
2,k) = ”mÕ

s(k)ms(k) K
[¸ÕmÕmÕ

s(aÕú)mÕ
s(bÕú)], [¸mms(aú)ms(bú)]

2 (Eú
2,k) . (3.40)

In words, the incoming state is labeled with orbital angular momentum ¸, m together with
spin components ms(aú) and ms(bú), and the outgoing state carries the same set with
primes as indicated.

To parametrize K2, it is more common to work in the basis which diagonalizes the
total spin of the dimer, s. This can take the values s = 0 (spin singlet) or s = 1 (spin
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• Can convert  indices to total dimer spin: 

• Antisymmetry   and  have opposite parities and do not mix

• And then to total dimer angular momentum:

• single channel described by phase shift

• for even  have two-channel mixing

𝒦2 {ℓmsμs}
⇒ s = 0 s = 1

{jμj}
s = 0 ⇒ even ℓ = j ⇒
s = 1 ⇒ odd ℓ ⇒ j = ℓ−1,ℓ, ℓ+1 ⇒ j > 0
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Final results

26

• Quantization condition (boldface quantities absorb factors of )i, 2ω, L3

det
k,ℓ,m,m*s

[F−1
3 − Kdf,3] = 0 F3 =

F
3

+ F
1

K−1
2 − F − G

F

• In practice, must truncate in  so that matrices have finite dimensionℓ

• Integral equations relating  and  take similar form to those for 

scalar particles, aside from extra spin indices and Wigner D-matrices

Kdf,3 ℳ3

• Range of validity for (isosymmetric) QCD

requiring that they respect Lorentz invariance and neutron number, and thus expect that
the resulting formalism applies generally. What we do restrict is the value of the total
CMFenergy, Eú

3 =
Ô

P 2 =


E2 ≠ P 2, in such a way that it is legitimate to neglect the
degrees of freedom that have been integrated out. In particular, for isosymmetric QCD we
require that

Ò
4m2

N ≠ m2
fi + mN < Eú

3 < 3mN + mfi . (3.53)

The upper limit is required to avoid 3N +fi on-shell states, while the lower limit avoids the
left-hand cut in two-to-two subprocesses due to single-pion exchange. The latter restriction
is necessary because, as explained in the following, the non-analyticity in K2 from the left-
hand cut leads to power-law finite-volume dependence.

Our aim in the following is to keep track of all power-like dependence of CL(P ) on
L (typically of the form of powers of 1/L), while neglecting dependence falling faster
than any power of 1/L. With a slight abuse of nomenclature, we will refer to the latter as
“exponentially suppressed”. Indeed, this category includes exponentially-suppressed scaling
of the form e≠mfiL, where mfi is the mass of the lightest degree of freedom in the system, e.g.
the pion in QCD, and generally not the mass of the spin-1/2 particle, which we denote m

in the following. For large enough L, such exponentially-suppressed terms are numerically
smaller than power-law e�ects.

The key di�erence between contributions to the finite- and infinite-volume correlators
is that the former involve sums over finite-volume momenta, while the latter involve in-
tegrals. Local vertices are unchanged. As discussed in ref. [25], one can use the Poisson
summation formula to argue that the di�erence between finite-volume sums and infinite-
volume integrals is exponentially suppressed unless the summand/integrand is singular.
This can happen either because there is an on-shell intermediate state, or because of a
non-analyticity in the vertex functions such as the above-mentioned left-hand cut. Since
in the following derivation we include the e�ects only of three-neutron intermediate states,
we are led to the same requirements on Eú

3 as given in eq. (3.53). We stress that the local-
ization of O in time plays an important role here, for it implies that states consisting, say,
of two neutrons and an antineutron, cannot propagate forward in time for an arbitrarily
long extent, and thus cannot lead to on-shell singularities.

The diagrammatic expansion involves the operators O and O
† as well as the above-

mentioned vertices. Simple examples are shown in figure 1. The neutron propagators in
these diagrams are given by

�L,–—(p) =
⁄

L
d4x eip·x

ÈTN–(x)N —(0)ÍL . (3.54)

They are thus fully dressed, and include loop diagrams that are not shown explicitly. The
subscript L on the expectation value refers to the L-dependence that arises from the spatial
periodicity, which implies that p must be drawn from the finite-volume set, and that the
spatial parts of loop momenta must be summed. However, in the vicinity of the single-
particle pole at p2 = m2, all loop contributions are far o� shell, so that L-dependence is

– 18 –
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Threshold expansion for 𝒦df,3

27

• Need parametrization of  in order to apply QC3 in practice

• Expand about threshold; analogous to effective-range expansion for 

• Similar to NR expansion in pionless EFT, except using relativistic fields

• Method: use neutron field operators 

• Write down all operators of the form  with arbitrary gamma-matrix structure and 0, 2, 4,… 
derivatives, requiring Lorentz and parity invariance 

• Take matrix elements of these operators between lab-frame states, leading to completely 
antisymmetric expressions in terms of Dirac spinors (in lab frame)

• Determine which are independent
• Insert NR expression for Dirac spinors, and expand in 3-momenta

𝒦df,3

𝒦2

𝒩
(𝒩𝒩)3
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Operators without derivatives

28

• 12 operators (have not used Fierz identities)

the external states are chosen to satisfy conservation of four-momentum. A key point here
is that Dirac spinors describe spin components in the lab-frame basis. The right-hand
side of eq. (5.3) has the correct symmetry properties to be a contribution to K

lab
df,3: it is

manifestly antisymmetric under initial or final particle interchanges, and it inherits the
correct Lorentz and parity transformation properties from those of the free-particle states.

We now consider the complete set of operators without derivatives, that is, with di-
mension of [E]9. The available Lorentz- and parity-invariant choices are OSSS and

OSPP = [N N ][N “5N ][N “5N ] ,

OSVV = [N N ][N “µN ][N “µ
N ] ,

OSAA = [N N ][N “µ“5N ][N “µ“5N ] ,

OSTT = [N N ][N ‡µ‹N ][N ‡µ‹
N ] ,

OPVA = [N “5N ][N “µN ][N “µ“5N ] ,

OPTTÕ = [N “5N ][N ‡µ‹N ][N ‡µ‹“5N ] ,

OTVV = [N ‡µ‹N ][N “µ
N ][N “‹

N ] ,

OTAA = [N ‡µ‹N ][N “µ“5N ][N “‹“5N ] ,

OTÕVA = [N ‡µ‹“5N ][N “µ
N ][N “‹“5N ] ,

OTTT = [N ‡µ‹N ][N ‡‹fl
N ][N ‡fl

µ
N ] ,

OTTÕTÕ = [N ‡µ‹N ][N ‡‹fl“5N ][N ‡fl
µ“5N ] ,

(5.4)

where we have left the x arguments implicit, and used

‡µ‹ = i
2 [“µ, “‹ ] . (5.5)

This list can be shortened using Fierz identities, but we give a complete enumeration as this
would be relevant if we were to consider nonidentical fermions. We convert these operators
into forms for K

lab
df,3 by taking matrix elements as in eq. (5.3). We then explicitly evaluate

the momentum dependence using Mathematica for arbitrary choices of spinor components
(not yet constrained to satisfy the Dirac equation) and find that all 12 operators lead to
forms that are proportional.9 Thus, with zero derivatives, there is a single contribution to
K

lab
df,3, given by the right-hand side of eq. (5.3).

We now enforce that the spinors satisfy the Dirac equation by writing

uk =
Ô

2Êk

A
‰k

‡·k
Êk+m‰k

B

, (5.6)

where ‰k is the non-relativistic two-spinor corresponding to the component ms(k), and
Êk =


k2 + m2. We insert this into eq. (5.3), and perform a nonrelativistic expansion,

i.e. an expansion in powers of k/m. The leading-order term (with no factors of k) vanishes,
as is expected because one cannot antisymmetrize the spin wavefunction of three identical

9
By contrast, there are three “four-fermion” Lorentz- and parity-operators of the form N 2N 2

. The

presence of only one “six-fermion” operator is expected at quadratic order in a nonrelativistic expansion,

where it is given by eq. (5.7). What is surprising is that this holds to all orders in this expansion.
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In this case no mixing occurs in K2 (since the two j = 0 cases have opposite parities), but
Kdf,3 and G will mix the channels, since j is not a good quantum number of the three-
particle state. Mixing in the two-particle K-matrix first arises for ¸max = 3, as discussed in
section 3.2.4.

5 Parametrization of Kdf,3

Implementing the quantization condition for three identical fermions requires a para-
metrization of Kdf,3. Since Kdf,3 is, by construction, smooth aside from three-particle
resonances or bound states, we present its parametrization in an expansion about thresh-
old. For this expansion, we work with the quantity K

lab
df,3 of eq. (3.18), in which spin

components are defined with respect to the lab-frame axis. When using Kdf,3 in, e.g., the
evaluation of the quantization condition, it will be necessary to rotate the spin indices to
the dimer-frame axis using eq. (3.22). The key constraint is that K

lab
df,3 must have the same

symmetry properties as the scattering amplitude, M3. It must transform covariantly under
Lorentz transformations and parity, and be fully antisymmetric with respect to the simul-
taneous exchange of the spin and momentum labels for any pair of incoming or outgoing
particles.

To construct the threshold expansion, we proceed by writing down Lorentz- and parity-
invariant local operators composed of three-neutron fields and three conjugate fields and
their derivatives. These have the schematic form N

3
N

3 (with derivatives and Dirac in-
dices implicit). By using quantum fields N and N , we automatically enforce the required
antisymmetry property, and by using local operators we ensure that the momentum depen-
dence is smooth. If we enumerate all possible independent operators with up to a certain
number of derivatives, each multiplied by an independent coe�cient, then, by the standard
assumption of e�ective field theories (EFTs), the corresponding matrix elements will yield
the most general amplitudes consistent with the symmetries.

To convert the local operators into explicit forms for K
lab
df,3, we take matrix elements

of the operators between external states in the lab-frame basis. This leads to expressions
involving the Dirac spinors associated with the initial and final particles, because of the
relations

ÈkÕ, ms(kÕ)|N (x)|0Í = ūms(kÕ)(kÕ)eikÕ·x , È0|N (x)|k, ms(k)Í = ums(k)(k)e≠ik·x . (5.1)

In this way an operator such as

OSSS(x) = [N (x)N (x)]3 , (5.2)

leads to an amplitude

ÈkÕ, ms(kÕ); aÕ, ms(aÕ); bÕ, ms(bÕ)|OSSS(x)|k, ms(k); a, ms(a); b, ms(b)Í =
6(ūkÕuk)(ūaÕua)(ūbÕub) ≠ 6(ūkÕua)(ūaÕuk)(ūbÕub) + . . . . (5.3)

Here we are using the shorthand uk = ums(k)(k), etc., and the ellipsis represents the four
other possible permutations arising from Wick contractions. We are also assuming that
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• All lead to identical  amplitudes (cf. four independent forms for )3 → 3 2 → 2

the external states are chosen to satisfy conservation of four-momentum. A key point here
is that Dirac spinors describe spin components in the lab-frame basis. The right-hand
side of eq. (5.3) has the correct symmetry properties to be a contribution to K

lab
df,3: it is

manifestly antisymmetric under initial or final particle interchanges, and it inherits the
correct Lorentz and parity transformation properties from those of the free-particle states.

We now consider the complete set of operators without derivatives, that is, with di-
mension of [E]9. The available Lorentz- and parity-invariant choices are OSSS and

OSPP = [N N ][N “5N ][N “5N ] ,

OSVV = [N N ][N “µN ][N “µ
N ] ,

OSAA = [N N ][N “µ“5N ][N “µ“5N ] ,

OSTT = [N N ][N ‡µ‹N ][N ‡µ‹
N ] ,

OPVA = [N “5N ][N “µN ][N “µ“5N ] ,

OPTTÕ = [N “5N ][N ‡µ‹N ][N ‡µ‹“5N ] ,

OTVV = [N ‡µ‹N ][N “µ
N ][N “‹

N ] ,

OTAA = [N ‡µ‹N ][N “µ“5N ][N “‹“5N ] ,

OTÕVA = [N ‡µ‹“5N ][N “µ
N ][N “‹“5N ] ,

OTTT = [N ‡µ‹N ][N ‡‹fl
N ][N ‡fl

µ
N ] ,

OTTÕTÕ = [N ‡µ‹N ][N ‡‹fl“5N ][N ‡fl
µ“5N ] ,

(5.4)

where we have left the x arguments implicit, and used

‡µ‹ = i
2 [“µ, “‹ ] . (5.5)

This list can be shortened using Fierz identities, but we give a complete enumeration as this
would be relevant if we were to consider nonidentical fermions. We convert these operators
into forms for K

lab
df,3 by taking matrix elements as in eq. (5.3). We then explicitly evaluate

the momentum dependence using Mathematica for arbitrary choices of spinor components
(not yet constrained to satisfy the Dirac equation) and find that all 12 operators lead to
forms that are proportional.9 Thus, with zero derivatives, there is a single contribution to
K

lab
df,3, given by the right-hand side of eq. (5.3).

We now enforce that the spinors satisfy the Dirac equation by writing

uk =
Ô

2Êk

A
‰k

‡·k
Êk+m‰k

B

, (5.6)

where ‰k is the non-relativistic two-spinor corresponding to the component ms(k), and
Êk =


k2 + m2. We insert this into eq. (5.3), and perform a nonrelativistic expansion,

i.e. an expansion in powers of k/m. The leading-order term (with no factors of k) vanishes,
as is expected because one cannot antisymmetrize the spin wavefunction of three identical

9
By contrast, there are three “four-fermion” Lorentz- and parity-operators of the form N 2N 2

. The

presence of only one “six-fermion” operator is expected at quadratic order in a nonrelativistic expansion,

where it is given by eq. (5.7). What is surprising is that this holds to all orders in this expansion.
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• Insert NR on-shell form, and find leading contribution to  involves 2 derivatives:𝒦df,3

⇒

spin-1/2 particles. The first nonvanishing term is quadratic in momenta and proportional
to

KA = A

Ë
(‰†

kÕ ‡ · kÕ ‡ · k ‰k)(‰†
aÕ‰a)(‰†

bÕ‰b)
È

. (5.7)

Here A indicates antisymmetrization over initial and final particle labels; it di�ers from
the operation A defined in eq. (B.6), and used in eq. (4.2), by not requiring an initial step
of combining with spherical harmonics. Therefore, the contribution to Kdf,3 is:

m2
K

lab
df,3 ∏

c0
m2 KA + O

A
k4

m4

B

, (5.8)

where c0 is a dimensionless coe�cient whose value is not fixed. Here we assume that the
contribution of the operators in eq. (5.4) appears in the Lagrangian as L ∏ (g0/m5)O, where
g0 is dimensionless and proportional to c0 in eq. (5.8). The expansion can be continued to
higher orders in k/m, a point that we return to below.

At quadratic order in the nonrelativistic expansion, we must also consider operators
containing two derivatives,10 i.e. of energy dimension [E]11. In appendix C we enumerate
all such operators that are Lorentz- and parity-invariant, that are not related by Fierz
identities, and that cannot be written in terms of operators without derivatives using the
equations of motion. We find 22 such operators. However, if we insert the nonrelativistic
expansion of the spinors into the corresponding contributions to K

lab
df,3, we find only two

independent terms at quadratic order,11 which can be chosen to be KA, given above, and

KB = A

Ë
kÕ

· k(‰†
kÕ‰k)(‰†

aÕ‰a)(‰†
bÕ‰b)

È
. (5.9)

Since these operators have a higher energy dimension, the couplings in the Lagrangian of
the EFT will contain two inverse powers of the typical energy scale of the EFT, �2

EFT. This
way, the contribution of dimension-11 operators to Kdf,3 at quadratic order in momenta is:

m2
K

lab
df,3 ∏

c1
�2

EFT
KA + c2

�2
EFT

KB + O

A
k4

m2�2
EFT

B

. (5.10)

If we consider systems of nucleons at low momentum described by pionless EFT, the energy
scale is the pion mass, �EFT ƒ mfi. This choice implies that (i) the contribution from
eq. (5.8) is subdominant with respect to that of eq. (5.10), and (ii) eq. (5.10) is the most
general form of Kdf,3 through O(k2). We note, however, that the range of convergence
of pionless EFT is limited by the left-hand cut (k2 < m2

fi/4), while the relativistic finite-
volume three-neutron formalism is applicable beyond that, i.e. up to the NNNfi threshold
(k2

≥ mfimN ). We also stress that, at this order in the nonrelativistic expansion, we
would have obtained the same result simply by enforcing rotation and parity invariance
and antisymmetry.

10
Operators with one derivative can be related to operators without derivatives using the equations of

motion, and thus are not independent.
11

Because the zeroth component of the derivatives yield energies, which do not vanish at threshold, there

could in principle be a zeroth order term, but this vanishes due to the antisymmetry, as discussed above.
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antisymmetrization
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Operators with 2 derivatives

29

• For consistency, need to consider operators with 2 derivatives

• Using Fierz identities and EoM, find 22 independent operators

• Inserting NR on-shell form, find two independent 2-derivatives forms:
spin-1/2 particles. The first nonvanishing term is quadratic in momenta and proportional
to

KA = A

Ë
(‰†

kÕ ‡ · kÕ ‡ · k ‰k)(‰†
aÕ‰a)(‰†

bÕ‰b)
È

. (5.7)

Here A indicates antisymmetrization over initial and final particle labels; it di�ers from
the operation A defined in eq. (B.6), and used in eq. (4.2), by not requiring an initial step
of combining with spherical harmonics. Therefore, the contribution to Kdf,3 is:

m2
K

lab
df,3 ∏

c0
m2 KA + O

A
k4

m4

B

, (5.8)

where c0 is a dimensionless coe�cient whose value is not fixed. Here we assume that the
contribution of the operators in eq. (5.4) appears in the Lagrangian as L ∏ (g0/m5)O, where
g0 is dimensionless and proportional to c0 in eq. (5.8). The expansion can be continued to
higher orders in k/m, a point that we return to below.

At quadratic order in the nonrelativistic expansion, we must also consider operators
containing two derivatives,10 i.e. of energy dimension [E]11. In appendix C we enumerate
all such operators that are Lorentz- and parity-invariant, that are not related by Fierz
identities, and that cannot be written in terms of operators without derivatives using the
equations of motion. We find 22 such operators. However, if we insert the nonrelativistic
expansion of the spinors into the corresponding contributions to K

lab
df,3, we find only two

independent terms at quadratic order,11 which can be chosen to be KA, given above, and

KB = A

Ë
kÕ

· k(‰†
kÕ‰k)(‰†

aÕ‰a)(‰†
bÕ‰b)

È
. (5.9)

Since these operators have a higher energy dimension, the couplings in the Lagrangian of
the EFT will contain two inverse powers of the typical energy scale of the EFT, �2

EFT. This
way, the contribution of dimension-11 operators to Kdf,3 at quadratic order in momenta is:

m2
K

lab
df,3 ∏

c1
�2

EFT
KA + c2

�2
EFT

KB + O

A
k4

m2�2
EFT

B

. (5.10)

If we consider systems of nucleons at low momentum described by pionless EFT, the energy
scale is the pion mass, �EFT ƒ mfi. This choice implies that (i) the contribution from
eq. (5.8) is subdominant with respect to that of eq. (5.10), and (ii) eq. (5.10) is the most
general form of Kdf,3 through O(k2). We note, however, that the range of convergence
of pionless EFT is limited by the left-hand cut (k2 < m2

fi/4), while the relativistic finite-
volume three-neutron formalism is applicable beyond that, i.e. up to the NNNfi threshold
(k2

≥ mfimN ). We also stress that, at this order in the nonrelativistic expansion, we
would have obtained the same result simply by enforcing rotation and parity invariance
and antisymmetry.

10
Operators with one derivative can be related to operators without derivatives using the equations of

motion, and thus are not independent.
11

Because the zeroth component of the derivatives yield energies, which do not vanish at threshold, there

could in principle be a zeroth order term, but this vanishes due to the antisymmetry, as discussed above.
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derivatives onto the other fields, yielding one term that involves a ˆ2, another that has
two derivatives on di�erent N fields, and three terms with one derivative each on a N and
a N . The term with derivatives on two di�erent N fields can be moved to the left-hand
side of the (now matrix) equation, while, using Fierz identities, we can bring terms with
derivatives on N and N fields in di�erent bilinears to a form in which both the derivatives
act within the same bilinear. Assuming that we can invert this matrix equation, each term
with derivatives on di�erent factors of N can be rewritten in our canonical form together
with a nonderivative term. An essentially identical argument holds for case (ii), with the
roles of N and N interchanged. For case (iii), if needed we can use Fierz identities to reach
the canonical form.

We find 30 operators of the canoncial form to be independent, 8 of which can be
dropped using the equations of motion. For convenience, we divide these into those in
which the Lorentz indices on the derivatives are contracted together (ten in all)13

SSS = (ˆµ
N ˆµN )(N N )(N N ) , (C.3)

SPP = (ˆµ
N ˆµN )(N “5N )(N “5N ) , (C.4)

PSP = (ˆµ
N “5ˆµN )(N N )(N “5N ) , (C.5)

SV V = (ˆµ
N ˆµN )(N “‹N )(N “‹

N ) , (C.6)
V SV = (ˆµ

N “‹ˆµN )(N N )(N “‹
N ) , (C.7)

ASA = (ˆµ
N “‹“5ˆµN )(N N )(N “‹“5N ) , (C.8)

TST = (ˆµ
N ‡‹flˆµN )(N N )(N ‡‹fl

N ) , (C.9)
PV A = (ˆµ

N “5ˆµN )(N “‹N )(N “‹“5N ) , (C.10)
V AP = (ˆµ

N “‹ˆµN )(N “‹“5N )(N “5N ) , (C.11)
APV = (ˆµ

N “‹“5ˆµN )(N “5N )(N “‹N ) , (C.12)

those in which the derivatives are contracted with a Dirac matrix (12 in all),

SV V Õ = (ˆµ
N ˆ‹N )(N “µN )(N “‹

N ) , (C.13)
TST Õ = (ˆ‹N ‡µflˆµ

N )(N N )(N ‡‹fl
N ) , (C.14)

PV AÕ = (ˆµ
N “5ˆ‹N )(N “µN )(N “‹“5N ) , (C.15)

V TV Õ = (ˆµ
N “flˆ‹N )(N ‡‹fl

N )(N “µN ) , (C.16)
ATAÕ = (ˆµ

N “fl“5ˆ‹N )(N ‡‹fl
N )(N “µ“5N ) , (C.17)

TTT Õ = (ˆµ
N ‡µ÷ˆ÷

N )(N ‡‹fl
N )(N ‡‹flN ) , (C.18)

TTT ÕÕ = (ˆµN ‡µ‹ˆ÷N )(N ‡÷fl
N )(N ‡fl‹N ) , (C.19)

TTT ÕÕ = (ˆ÷N ‡µ‹ˆµN )(N ‡÷fl
N )(N ‡fl‹N ) , (C.20)

TT5P Õ = (ˆµ
N ‡µflˆ‹N )(N ‡‹fl“5N )(N “5N ) , (C.21)

T5V AÕ = (ˆµ
N ‡µ‹“5ˆ‹

N )(N “fl
N )(N “fl“5N ) , (C.22)

T5V AÕÕ = (ˆµ
N ‡fl‹“5ˆ‹

N )(N “µ
N )(N “fl“5N ) , (C.23)

T5TT Õ
5 = (ˆµ

N ‡µ‹“5ˆ‹
N )(N ‡÷fl

N )(N ‡÷fl“5N ) (C.24)
13

In all operators, derivatives act only on the object immediately to their right.
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derivatives onto the other fields, yielding one term that involves a ˆ2, another that has
two derivatives on di�erent N fields, and three terms with one derivative each on a N and
a N . The term with derivatives on two di�erent N fields can be moved to the left-hand
side of the (now matrix) equation, while, using Fierz identities, we can bring terms with
derivatives on N and N fields in di�erent bilinears to a form in which both the derivatives
act within the same bilinear. Assuming that we can invert this matrix equation, each term
with derivatives on di�erent factors of N can be rewritten in our canonical form together
with a nonderivative term. An essentially identical argument holds for case (ii), with the
roles of N and N interchanged. For case (iii), if needed we can use Fierz identities to reach
the canonical form.

We find 30 operators of the canoncial form to be independent, 8 of which can be
dropped using the equations of motion. For convenience, we divide these into those in
which the Lorentz indices on the derivatives are contracted together (ten in all)13

SSS = (ˆµ
N ˆµN )(N N )(N N ) , (C.3)

SPP = (ˆµ
N ˆµN )(N “5N )(N “5N ) , (C.4)

PSP = (ˆµ
N “5ˆµN )(N N )(N “5N ) , (C.5)

SV V = (ˆµ
N ˆµN )(N “‹N )(N “‹

N ) , (C.6)
V SV = (ˆµ

N “‹ˆµN )(N N )(N “‹
N ) , (C.7)

ASA = (ˆµ
N “‹“5ˆµN )(N N )(N “‹“5N ) , (C.8)

TST = (ˆµ
N ‡‹flˆµN )(N N )(N ‡‹fl

N ) , (C.9)
PV A = (ˆµ

N “5ˆµN )(N “‹N )(N “‹“5N ) , (C.10)
V AP = (ˆµ

N “‹ˆµN )(N “‹“5N )(N “5N ) , (C.11)
APV = (ˆµ

N “‹“5ˆµN )(N “5N )(N “‹N ) , (C.12)

those in which the derivatives are contracted with a Dirac matrix (12 in all),

SV V Õ = (ˆµ
N ˆ‹N )(N “µN )(N “‹

N ) , (C.13)
TST Õ = (ˆ‹N ‡µflˆµ

N )(N N )(N ‡‹fl
N ) , (C.14)

PV AÕ = (ˆµ
N “5ˆ‹N )(N “µN )(N “‹“5N ) , (C.15)

V TV Õ = (ˆµ
N “flˆ‹N )(N ‡‹fl

N )(N “µN ) , (C.16)
ATAÕ = (ˆµ

N “fl“5ˆ‹N )(N ‡‹fl
N )(N “µ“5N ) , (C.17)

TTT Õ = (ˆµ
N ‡µ÷ˆ÷

N )(N ‡‹fl
N )(N ‡‹flN ) , (C.18)

TTT ÕÕ = (ˆµN ‡µ‹ˆ÷N )(N ‡÷fl
N )(N ‡fl‹N ) , (C.19)

TTT ÕÕ = (ˆ÷N ‡µ‹ˆµN )(N ‡÷fl
N )(N ‡fl‹N ) , (C.20)

TT5P Õ = (ˆµ
N ‡µflˆ‹N )(N ‡‹fl“5N )(N “5N ) , (C.21)

T5V AÕ = (ˆµ
N ‡µ‹“5ˆ‹

N )(N “fl
N )(N “fl“5N ) , (C.22)

T5V AÕÕ = (ˆµ
N ‡fl‹“5ˆ‹

N )(N “µ
N )(N “fl“5N ) , (C.23)

T5TT Õ
5 = (ˆµ

N ‡µ‹“5ˆ‹
N )(N ‡÷fl

N )(N ‡÷fl“5N ) (C.24)
13

In all operators, derivatives act only on the object immediately to their right.
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spin-1/2 particles. The first nonvanishing term is quadratic in momenta and proportional
to

KA = A

Ë
(‰†

kÕ ‡ · kÕ ‡ · k ‰k)(‰†
aÕ‰a)(‰†

bÕ‰b)
È

. (5.7)

Here A indicates antisymmetrization over initial and final particle labels; it di�ers from
the operation A defined in eq. (B.6), and used in eq. (4.2), by not requiring an initial step
of combining with spherical harmonics. Therefore, the contribution to Kdf,3 is:

m2
K

lab
df,3 ∏

c0
m2 KA + O

A
k4

m4

B

, (5.8)

where c0 is a dimensionless coe�cient whose value is not fixed. Here we assume that the
contribution of the operators in eq. (5.4) appears in the Lagrangian as L ∏ (g0/m5)O, where
g0 is dimensionless and proportional to c0 in eq. (5.8). The expansion can be continued to
higher orders in k/m, a point that we return to below.

At quadratic order in the nonrelativistic expansion, we must also consider operators
containing two derivatives,10 i.e. of energy dimension [E]11. In appendix C we enumerate
all such operators that are Lorentz- and parity-invariant, that are not related by Fierz
identities, and that cannot be written in terms of operators without derivatives using the
equations of motion. We find 22 such operators. However, if we insert the nonrelativistic
expansion of the spinors into the corresponding contributions to K

lab
df,3, we find only two

independent terms at quadratic order,11 which can be chosen to be KA, given above, and

KB = A

Ë
kÕ

· k(‰†
kÕ‰k)(‰†

aÕ‰a)(‰†
bÕ‰b)

È
. (5.9)

Since these operators have a higher energy dimension, the couplings in the Lagrangian of
the EFT will contain two inverse powers of the typical energy scale of the EFT, �2

EFT. This
way, the contribution of dimension-11 operators to Kdf,3 at quadratic order in momenta is:

m2
K

lab
df,3 ∏

c1
�2

EFT
KA + c2

�2
EFT

KB + O

A
k4

m2�2
EFT

B

. (5.10)

If we consider systems of nucleons at low momentum described by pionless EFT, the energy
scale is the pion mass, �EFT ƒ mfi. This choice implies that (i) the contribution from
eq. (5.8) is subdominant with respect to that of eq. (5.10), and (ii) eq. (5.10) is the most
general form of Kdf,3 through O(k2). We note, however, that the range of convergence
of pionless EFT is limited by the left-hand cut (k2 < m2

fi/4), while the relativistic finite-
volume three-neutron formalism is applicable beyond that, i.e. up to the NNNfi threshold
(k2

≥ mfimN ). We also stress that, at this order in the nonrelativistic expansion, we
would have obtained the same result simply by enforcing rotation and parity invariance
and antisymmetry.

10
Operators with one derivative can be related to operators without derivatives using the equations of

motion, and thus are not independent.
11

Because the zeroth component of the derivatives yield energies, which do not vanish at threshold, there

could in principle be a zeroth order term, but this vanishes due to the antisymmetry, as discussed above.
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Same as from 0-derivative operators
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Summary for 𝒦df,3

30

• 0-derivative operators contribute

m2
N𝒦𝗅𝖺𝖻

df,3 ⊃
c0

m2
N

𝒦A + 𝒪(k4/m4
N)

Unknown, 
dimensionless 

constant

• 2-derivative operators imply

Dimensionless
combination

m2
N𝒦𝗅𝖺𝖻

df,3 ⊃
c1

Λ2
EFT

𝒦A +
c2

Λ2
EFT

𝒦B + 𝒪(k4/m2
NΛ2

EFT)

• Since expect  , the 2-derivative operators dominate

• The form of the allowed operators could more easily have been determined directly 
using a NR expansion, but this would lose the implications of relativity at higher order

ΛEFT ∼ mπ
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Summary & Outlook for 3N 
• Including spin in the formalism involves additional subtleties not present for 2 particles

• Wigner rotations and fermion signs

• Implementing the QC3 is underway for toy interactions [including Wilder Schaaf]

• Various generalizations should be straightforward

• 3 nucleons of arbitrary isospin [underway]

•  at maximal isospin (no 3-particle resonance, but includes )

•  (for the Roper)

• Higher spins (e.g.  if stable)—though hard to think of applications

• Need to extend methods for solving integral equations

• Need to relate parameters in  to those in chiral EFTs used to study light nuclei

Nππ Δπ

Nππ + Nπ

ρ

𝒦df,3

31
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Summary & Outlook
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Summary

33

• Two-particle sector is entering precision phase

• Frontier is two nucleons, which are more challenging for LQCD

• Major steps have been taken in the three-particle sector

• Formalism well established & cross checked, and almost complete

• Several applications to three-particle spectra from LQCD

• Initial discrepancy with LO ChPT explained by large NLO contributions

• Integral equations solved in several cases 

• Path to a calculation of  decay amplitudes is now openK → 3π

K+π+

π+

π+

π+π+
K++
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Outlook

34

• Generalize formalism to broaden applications

• 3 nucleons with  (nnp & ppn)

• Accessing the WZW term: 

•

•

• Extend implementations using LQCD simulations

•  at physical quark masses

• I=0,1 three-particle resonances ( , …)

• Extend applications of integral equations in the presence of three-particle 
resonances, e.g. 

• Move on to 4 particles!

I = 1
2

KK̄ ↔ π+π0π−(I = 0)

N(1440, JP = 1
2

+
) → Nπ, Nππ

JPC, IG = 1−+,1− : π1(1600) → ηπ, 3π, KKππ, ηπππ, 5π

3π+, 3K+, π+π+K+, K+K+π+

ω, a1

Tcc
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ExoHad collaboration

35

exohad.org
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Thank you! 
Questions?
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• S. Dawid, Md. Islam and R. Briceño, 2303.04394 [Analytic continuation of 3-particle amplitues]

3π+

★Other numerical simulations  

• F. Romero-López, A. Rusetsky, C. Urbach, 1806.02367, JHEP [2- & 3-body interactions in    theory]
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• M. Garofolo et al., 2211.05605, JHEP [3-body resonances in  theory]

φ4

2π+ 3π+

φ4
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https://arxiv.org/abs/1806.02367
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https://arxiv.org/abs/2204.04807
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Alternate 3-particle approaches
★ Finite-volume unitarity (FVU) approach 

• M. Mai & M. Döring, 1709.08222 , EPJA  [formalism]

• M. Mai et al., 1706.06118, EPJA [unitary parametrization of M3 involving R matrix; used in FVU approach]

• A. Jackura et al., 1809.10523, EPJC [further analysis of R matrix parametrization]

• M. Mai & M. Döring, 1807.04746 , PRL [3 pion spectrum at finite-volume from FVU]
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3π+

3π+

3K−

3π+

a1(1260)

a1(1260)

★HALQCD approach  

• T. Doi et al. (HALQCD collab.), 1106.2276, Prog.Theor.Phys. [3 nucleon potentials in NR regime]

http://arxiv.org/abs/arXiv:1709.08222
http://arxiv.org/abs/arXiv:1706.06118
https://arxiv.org/abs/1809.10523
http://arxiv.org/abs/arXiv:1807.04746
https://arxiv.org/abs/1909.05749
https://arxiv.org/abs/1911.09047
https://arxiv.org/abs/2009.12358
https://arxiv.org/abs/2101.06144
https://arxiv.org/abs/2107.03973
https://arxiv.org/abs/2112.03355
http://arxiv.org/abs/arXiv:1106.2276
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Backup slides
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M3, Kdf,3

2 degrees of freedom

12 momentum  
     components

-10 Poincaré generators

8 degrees of freedom

18 momentum  
     components

-10 Poincaré generators

Divergence-free K matrix

47

• Kdf,3 has the same symmetries as M3: relativistic invariance, particle interchange, T-reversal

M2, K2

s=E*2 + θ s=E*2 + 7 “angles”

• Need more parameters to describe  than  (will be discussed in lecture 3)

• Why  and  appear in QC3, rather than  and , will be explained shortly

𝒦df,3 𝒦2

𝒦2 𝒦df,3 ℳ2 ℳdf,3


