Overview & status of methods for 3 particles

Steve Sharpe
University of Washington
Outline

• Motivations for studying 3-particles

• History and status of finite-volume formalism and applications
  [References at end of slides]

• Example of recent work: QC3 for 3 spin-$\frac{1}{2}$ particles

• Summary & Outlook
Outline

• Motivations for studying 3-particles
• History and status of finite-volume formalism and applications
[References at end of slides]
• Example of recent work: QC3 for 3 spin-$\frac{1}{2}$ particles
• Summary & Outlook

Will assume familiarity with QC2 (Lüscher quantization condition)
Motivations for studying three particles using LQCD
Cornucopia of exotics

62 new hadrons at the LHC

[I. Danilkin, talk at INT workshop, March 23]

+S. Sharpe, "Overview of 3-particle methods," Santa Fe workshop, 8/8/23
Motivations

- Studying resonances, most of which have decays involving 3 (or more) particles
  - $\omega(782, I^GJ^{PC} = 0^-1^-) \rightarrow 3\pi$
  - $N(1440, J^P = \frac{1^+}{2}) \rightarrow N\pi, N\pi\pi$
  - $T_{cc}(3875, I = 0, J^P = 1^{+?}) \rightarrow D^0D^0\pi^+$

- Determining 3-body "forces"
  - NNN interactions needed as input for EFT treatments of large nuclei, and for the neutron-star equation of state
  - $\pi\pi\pi, \pi K \bar{K}, \ldots$ interactions needed as input to study pion & kaon condensation

- Determining electroweak decay amplitudes involving 3 (or more) particles
  - $K \rightarrow 3\pi, D \rightarrow 2\pi, K \bar{K}, 4\pi, 2\eta, 6\pi, \ldots$

- Determine related 2-particle quantities that involve additional currents
  - $0 \overset{\mathcal{F}}{\rightarrow} 2, 1 \overset{\mathcal{F}}{\rightarrow} 2, 2 \overset{\mathcal{F}}{\rightarrow} 2$
History & status of formalism & applications for 3 particles
Problem in finite-volume QFT

Discrete energy spectrum

\[ E_0(L) \quad E_1(L) \quad E_2(L) \]

Scattering amplitudes

\[ iM_{n\rightarrow m} \]
Problem in finite-volume QFT

Discrete energy spectrum

\[ E_0(L) \]
\[ E_1(L) \]
\[ E_2(L) \]

? \[ iM_{n \rightarrow m} \]

Assume discretization errors small, or have been extrapolated away
History of formalism for 3 particles

- [Beane, Detmold, Savage et al. 07-11] studied ground state energies of $N\pi^+, MK^+, N\pi^+ + MK^+$ systems, and determined 3-particle interactions for particles at rest
- [Polejaeva & Rusetsky 12] showed in NREFT that 3 body spectrum determined by $2 \rightarrow 2$ & $3 \rightarrow 3$ infinite-volume scattering amplitudes
- [Hansen & SRS 14, 15] derived quantization condition (QC3) for 3 identical scalars in generic, relativistic EFT, working to all orders in Feynman-diagram expansion, keeping all angular momenta—“RFT approach”
- [Hammer & Rusetsky 17] derived QC3 using NREFT—greatly simplified derivation
- [Mai & Döring 17] obtained QC3 using unitary, relativistic representation of $3 \rightarrow 3$ amplitude—“FVU approach”
- [Blanton & SRS 20] showed equivalence of RFT & FVU approaches
- [Müller, Pang, Rusetsky & Wu 20] relativized NREFT approach
- [Müller & Rusetsky 20; Hansen, Romero-López & SRS 21] derived formalism for determining $K \rightarrow 3\pi$ amplitude
History of formalism for 3 particles

- [Beane, Detmold, Savage et al. 07-11] studied ground state energies of $N\pi^+, MK^+, N\pi^+ + MK^+$ systems, and determined 3-particle interactions for particles at rest.

- [Polejaeva & Rusetsky 12] showed in NREFT that 3 body spectrum determined by $2 \rightarrow 2$ & $3 \rightarrow 3$ infinite-volume scattering amplitudes.

- [Hansen & SRS 14, 15] derived quantization condition (QC3) for 3 identical scalars in generic, relativistic EFT, working to all orders in Feynman-diagram expansion, keeping all angular momenta—"RFT approach."

- [Hammer & Rusetsky 17] derived QC3 using NREFT—greatly simplified derivation.

- [Mai & Döring 17] obtained QC3 using unitary, relativistic representation of $3 \rightarrow 3$ amplitude—"FVU approach."


- [Müller, Pang, Rusetsky & Wu 20] relativized NREFT approach.

- [Müller & Rusetsky 20; Hansen, Romero-López & SRS 21] derived formalism for determining $K \rightarrow 3\pi$ amplitude.

I will show examples using the RFT approach.
Two-step method

2 & 3 particle Spectra from LQCD

Quantization conditions

QC2: \( \det [F^{-1} + \mathcal{H}_2] = 0 \)

QC3: \( \det [F_3^{-1} + \mathcal{H}_{df,3}] = 0 \)

Integral equations in infinite volume

Scattering amplitude \( \mathcal{M}_3 \)

[These are the RFT forms, and assume \( \mathbb{Z}_2 \) symmetry]

Incorporates initial- and final-state interactions
Two-step method

2 & 3 particle Spectra from LQCD

Quantization conditions
QC2: $\det \left[ F^{-1} + K_2 \right] = 0$
QC3: $\det \left[ F_3^{-1} + K_{df,3} \right] = 0$

Integral equations in infinite volume
Incorporates initial- and final-state interactions

Scattering amplitude $M_3$

Infinite-volume K matrix:
Obtained from Feynman diagrams using PV prescription for poles;
Real, free of unitary cuts

[These are the RFT forms, and assume $\mathbb{Z}_2$ symmetry]
Two-step method

2 & 3 particle Spectra from LQCD

Quantization conditions

QC2: \[ \det \left( F^{-1} + \mathcal{K}_2 \right) = 0 \]
QC3: \[ \det \left( F_3^{-1} + \mathcal{K}_{df,3} \right) = 0 \]

Infinite-volume K matrix:
Obtained from Feynman diagrams using PV prescription for poles;
Real, free of unitary cuts

Intermediate infinite-volume K matrix:
A short-distance, real, three-particle interaction free of unitary cuts, and
with physical divergences subtracted; unphysical since depends on cutoff

Integral equations in infinite volume

Incorporates initial- and final-state interactions

Scattering amplitude \( M_3 \)
Matrix structure in QC3

• All quantities are infinite-dimensional matrices with indices $k\ell mi$ describing 3 on-shell particles
  
  [finite volume “spectator” momentum: $k = (2\pi/L)n$] $\times$ [2-particle CM angular momentum: $\ell, m$] $\times$ [spectator flavor: $i$]

\[
(E - \omega_k, \vec{P} - \vec{k}) \quad \xrightarrow{\text{BOOST}} \quad \hat{a}^* \rightarrow \ell, m
\]

• For large $k$ (at fixed $E, L$), the other two particles are below threshold

• Must include such configurations, by analytic continuation, up to a cut-off at $k \approx m$ [Polejaeva & Rusetsky, `12]
$F_3$ collects 2-particle interactions

$$F_3 = \frac{1}{2\omega L^3} \left[ \frac{F}{3} - F \frac{1}{\mathcal{H}_2^{-1} + F + G} F \right]$$
$F_3$ collects 2-particle interactions

$$F_3 = \frac{1}{2 \omega L^3} \left[ \frac{F}{3} - F \frac{1}{\mathcal{K}_2^{-1} + F + G} \right]$$
**F_3 collects 2-particle interactions**

\[
F_3 = \frac{1}{2\omega L^3} \left[ \frac{F}{3} - F \frac{1}{\mathcal{H}_2^{-1} + F + G} \right]
\]

- \( F \) & \( G \) are known geometrical functions, containing cutoff function \( H(k) \)

\[
F_{p\ell'm';k\ell m} = \delta_{pk} H(\hat{k}) \quad F_{PV,\ell'm';\ell m}(E - \omega_k, \vec{P} - \vec{k}, L)
\]

\[
F_{PV,\ell'm';\ell m}(E, \vec{P}, L) = \frac{1}{2} \left( \frac{1}{L^3} \sum_{\vec{k}} - \text{PV} \right) \frac{d^3k}{(2\pi)^3} \frac{\mathcal{Y}_{\ell m}(\hat{k}^*) \mathcal{Y}_{\ell m}(\hat{k}^*) h(\hat{k})}{2\omega_k 2\omega_{P-k}(E - \omega_k - \omega_{P-k})}
\]

\[
\mathcal{Y}_{\ell m}(\hat{k}^*) = \sqrt{4\pi} \left( \frac{k^*}{q^*} \right)^\ell Y_{\ell m}(\hat{k}^*)
\]

\[
G_{p\ell'm';k\ell m} = \left( \frac{k^*}{q_p^*} \right)^{\ell'} \frac{4\pi Y_{\ell m}(\hat{k}^*) H(\vec{p}) H(\vec{k}) Y_{\ell m}(\hat{p}^*)}{(P - k - p)^2 - m^2} \left( \frac{p^*}{q_k^*} \right)^\ell \frac{1}{2\omega_k L^3}
\]

Relativistic form introduced in [BHS17]

S. Sharpe, "Overview of 3-particle methods," Santa Fe workshop, 8/8/23
Divergence-free K matrix

\[
\text{det} \left[ F_3(E, \vec{P}, L)^{-1} + \mathcal{K}_{\text{df},3}(E^*) \right] = 0
\]

What is this? A quasi-local divergence-free 3-particle interaction
Divergence-free K matrix

\[ \det \left[ F_3(E, \vec{P}, L)^{-1} + \mathcal{K}_{df,3}(E^*) \right] = 0 \]

What is this? A quasi-local divergence-free 3-particle interaction

Three-to-three amplitude has kinematic singularities!

\( iM_{3\rightarrow3} \equiv \)

fully connected correlator with six external legs amputated and projected on shell

\[ = \]

Certain external momenta put this on-shell!

[Artwork from Hansen, HMI lectures]

S. Sharpe, ``Overview of 3-particle methods,'' Santa Fe workshop, 8/8/23
Divergence-free K matrix

\[
\det \left[ F_3(E, \vec{P}, L)^{-1} + \mathcal{K}_{df,3}(E^*) \right] = 0
\]

What is this? A quasi-local divergence-free 3-particle interaction

Three-to-three amplitude has kinematic singularities!

\[iM_{3 \to 3} \equiv \text{fully connected correlator with six external legs amputated and projected on shell}\]

\[= + \cdots\]

Certain external momenta put this on-shell!

- To have a nonsingular (divergence-free) quantity, need to subtract pole
- To obtain \(\mathcal{K}_{df,3}\) also remove branch points associated with all cuts
- \(\mathcal{K}_{df,3}\) has the same symmetries as \(M_{df,3}\), but depends on a cutoff function
Status: formalism

- 3 identical spinless particles [Hansen & SRS 14,15 (RFT); Hammer, Pang, Rusetsky 17 (NREFT); Mai, Döring 17 (FVU)]
  - Potential applications: $3\pi^+, 3K^+, 3D^+$, … as well as $\phi^4$ theory
- Mixing of two- and three-particle channels for identical spinless particles [Briceño, Hansen, SRS 17]
  - Potential applications: Step on the way to $N(1440) \rightarrow N\pi$, $N\pi\pi$, etc.
- 3 degenerate but distinguishable spinless particles, e.g. 3$\pi$ with isospin 0, 1, 2, 3 [Hansen, Romero-López, SRS 20]; $I = 1$ case in FVU approach [Mai et al., 21]
  - Potential applications:

<table>
<thead>
<tr>
<th>Resonance</th>
<th>$I_{\pi\pi\pi}$</th>
<th>$J^P$</th>
<th>Decays</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega(782)$</td>
<td>0</td>
<td>1$^-$</td>
<td>$\pi^+\pi^0\pi^-$</td>
</tr>
<tr>
<td>$h_1(1170)$</td>
<td>0</td>
<td>1$^+$</td>
<td>$\rho\pi \rightarrow 3\pi$</td>
</tr>
<tr>
<td>$\omega_3(1670)$</td>
<td>0</td>
<td>3$^-$</td>
<td>3$\pi$, 5$\pi$</td>
</tr>
<tr>
<td>$\pi(1300)$</td>
<td>1</td>
<td>0$^-$</td>
<td>$\rho\pi \rightarrow 3\pi$</td>
</tr>
<tr>
<td>$a_1(1260)$</td>
<td>1</td>
<td>1$^+$</td>
<td>3$\pi$, $K\bar{K}\pi$</td>
</tr>
<tr>
<td>$\pi_1(1400)$</td>
<td>1</td>
<td>1$^-$</td>
<td>$\eta\pi$, 3$\pi$?</td>
</tr>
<tr>
<td>$\pi_2(1670)$</td>
<td>1</td>
<td>2$^-$</td>
<td>3$\pi$, $K\bar{K}\pi$</td>
</tr>
<tr>
<td>$a_2(1320)$</td>
<td>1</td>
<td>2$^+$</td>
<td>3$\pi$, $K\bar{K}$, 5$\pi$, $\eta\pi$</td>
</tr>
<tr>
<td>$a_4(1970)$</td>
<td>1</td>
<td>4$^+$</td>
<td>3$\pi$, $K\bar{K}$, 5$\pi$, $\eta\pi$</td>
</tr>
</tbody>
</table>
Status: formalism (continued)

• 3 nondegenerate spinless particles [Blanton, SRS 20]
  • Potential applications: $D_s^+D^0\pi^-$

• 2 identical +1 different spinless particles [Blanton, SRS 21]
  • Potential applications: $\pi^+\pi^+K^+, K^+K^+\pi^+$

• 3 identical spin-$\frac{1}{2}$ particles [Draper, Hansen, Romero-López, SRS 23]
  • Potential applications: $3n$, $3p$, $3\Lambda$

• $DD\pi$ for all isospins (also $BB\pi$, $KK\pi$) [Draper, Hansen, Romero-López, SRS 23; talk by Fernando]
  • Potential applications: $T_{cc} \rightarrow D^*D$ incorporating LH cut
Status: applications

- $3\pi^+$: determined parameters in threshold expansion of $\mathcal{K}_{df,3}$, including pair interactions in s- and d-waves; integral equations solved for s-wave interactions only [Talk by Raúl]

- $3K^+$: determined s- and d-wave parameters in $\mathcal{K}_{df,3}$

- $\phi^4$: extracted $\mathcal{K}_{df,3}$ in single-scalar theory; extracted 3-particle resonance parameters in two-scalar theory, using RFT and FVU approaches [Talk by Fernando]

- $3\pi$ with $I = 1$: first study of $a_1(1260)$ with formalism based on 2 levels; solved integral equations in FVU approach

- $\pi^+\pi^+K^+ & K^+K^+\pi^+$: determined s- and p-wave parameters in $\mathcal{K}_{df,3}$; found evidence for small discretization effects [Talk by Fernando]

- Integral equations solved for complex energies for simple system with near-unitary two-particle interactions and Efimov states (bound or resonant) [Talk by Raúl]

- ChPT: LO results for $3\pi^+, \pi^+\pi^+K^+, K^+K^+\pi^+, 3K^+$, including $a^2$ effects: agree in rough magnitude but not in detail with results from LQCD calculations [Talk by Fernando]

- ChPT: NLO result for $3\pi^+$; greatly improves agreement with LQCD results [Talk by Fernando]
QC3 for identical spin-\(\frac{1}{2}\) particles

Three relativistic neutrons in a finite volume

Zachary T. Draper\(^a\), Maxwell T. Hansen\(^b\), Fernando Romero-López\(^c\), and Stephen R. Sharpe\(^a\)

\texttt{arXiv:2303.10219 (JHEP)}
Motivation

• Determine 3 neutron interaction from first principles using LQCD
  • Important for neutron star EoS, heavy nuclei, …

• Incorporating spin into 3-particle formalism in a simple setting
  • Extensions to 3 nucleon interactions in isosymmetric QCD should be straightforward
  • Important step on the way to studying Roper: $N(1440) \rightarrow \pi N, \pi \pi N$

• Want relativistic approach since, for heavier than physical pions, the first inelastic threshold (where the formalism breaks down) can occur for relativistic nucleons
  • And for future applications such as the Roper, relativistic effects needed
New features for spin $\frac{1}{2}$

- Extra spin degree of freedom—gives extra matrix indices
- Total spin is conserved in NR limit; no longer true in relativistic system, due to Wigner rotations induced by boosts

![Diagram](image)

- Interactions in moving frames can flip spins

- Antisymmetry of states due to Fermi statistics
- Inclusion of spin is much more complicated than for 2-particle QC [Briceño]
3-particle coordinates

- 3 scalars with total momentum \((E, \vec{P})\)

In finite volume, matrix indices \(\{k, \ell, m\}\)

What changes when include spin?
Describing spin $\frac{1}{2}$ states

- **Standard moving spin states**: boost from CMF; corresponds to spinor $u(p, s)$

  $$|p, sm_s\rangle = U(L(\beta_p)) |0, sm_s\rangle$$
  $$≡ |p, m_s(p)\rangle \text{ for spin } \frac{1}{2}$$

- **Key property**: rotates as nonrelativistic 2-component spinor

  $$U(R) |p, s m_s\rangle = |Rp, s m'_s\rangle \mathcal{D}^{(s)}_{m'_s, m_s} (R)$$

- **Lab-frame description of 3 spin-$\frac{1}{2}$ particles** (*lab-axis frame*)

  $$|k, m_s(k)\rangle \otimes |a, m_s(a)\rangle \otimes |b, m_s(b)\rangle$$

- **Natural choice for $\mathcal{H}_{df,3}$**

- **Collect spin indices into vector**: $m_s = (m_s(k), m_s(a), m_s(b))$
Describing spin \( \frac{1}{2} \) states

- To combine spins of pair with orbital angular momentum \( \ell \), need \( a \) & \( b \) in pair CMF

\[
|a^*, m_s(a^*)\rangle \equiv U(L(\beta_{a^*})) |0, m_s\rangle \quad \text{and} \quad |b^*, m_s(b^*)\rangle \equiv U(L(\beta_{b^*})) |0, m_s\rangle
\]

- Thus introduce \textit{dimer-axis frame} spin indices

\[
|k, m_s(k)\rangle \otimes |a^*, m_s(a^*)\rangle \otimes |b^*, m_s(b^*)\rangle
\]

- Natural choice for \( \mathcal{H}_2 \), and for QC3

- Collect spin indices into vector: \( m_s^* = (m_s(k), m_s(a^*), m_s(b^*)) \)

- Relation between spin components involves Wigner rotations, e.g.

\[
|a^*, m_s(a)\rangle \equiv U(L(-\beta_{P-k})) |a, m_s(a)\rangle
\]

\[
= U(L(-\beta_{P-k})) U(L(\beta_a)) |0, m_s\rangle
\]

\[
= U(L(\beta_{a^*})) U(R_a) |0, m_s\rangle
\]

\[
= |a^*, m_s(a^*)\rangle D(R_a)_{m_s m_s}
\]
Impact on $G$

$$\text{det } [F_3^{-1}(E, P, L) + \mathcal{H}_{df,3}(E^*)] = 0$$

- Arises when spectator is switched
- Spin components conserved in lab frame

$$\Delta_{L,\alpha\beta}(b) = i \frac{\phi + m}{b^2 - m^2 + i\epsilon} + R_{L,\alpha\beta}(b)$$

Fully dressed propagator

Nonsingular residue

- Leads to Wigner D-matrices when express in *dimer-axis frame*

$$[G^{lab}]_{pl'm'm'_s;klmm_m}(E, P, L) \equiv -\delta_{m'_s(p),m_s(p)}\delta_{m'_s(k),m_s(k)}\delta_{m'_s(b),m_s(b)}$$

$$\times \frac{i}{4\omega_P\omega_k L^6} \frac{H(p)H(k)}{b^2 - m^2} \frac{4\pi\mathcal{Y}_{\ell'}(k_p^*)\mathcal{Y}_{\ell m}(p_{k_p}^*)}{q_{2,l}^* q_{2,k}}$$

Sign from Fermi Statistics

$$G_{pl'm'm'_s;klmm_m} = D^{(p,k)\dagger}_{m'_s m'_s} G^{lab}_{pl'm'm'_s;klmm_m} D_{m'_s m'_s}^{(k,p)}$$

Product of two Wigner D-matrices (one for each Member of pair)
Impact on $F$

$$\det \left[ F_3^{-1}(E, P, L) + \mathcal{K}_{df,3}(E^*) \right] = 0$$

$$F_3 = \frac{F}{3} - \frac{1}{\mathcal{K}_{2,L}^{-1} + F + G}$$

Spin indices match in lab frame

$$[F^{\text{lab}}]_{k'\ell'm'm';k\ell mm}(E, P, L) \equiv \delta_{m'm} \delta_{k'k} \frac{iH(k)}{2\omega_k L^3} 2 \int_a \frac{1}{L^3} \sum_a -\text{p.v.} \int_a$$

$$\times \frac{4\pi \gamma_{\ell'm'}(a_k^*) \gamma_{\ell m}^*(a_k^*)}{2\omega_a (b^2 - m^2)} \frac{1}{(q_{2,k}^*)^{\ell + \ell'}}$$

$F = F^{\text{lab}}$

Wigner D-matrices cancel
Impact on $\mathcal{K}_2$

\[
\det \left[ F_3^{-1}(E, P, L) + \mathcal{H}_{df,3}(E^*) \right] = 0
\]

\[
F_3 = \frac{F}{3} - F \frac{1}{\mathcal{K}_2^{-1} + F + G F}
\]

- Naturally expressed in *dimer-axis frame*

\[
[K_2]_{k'\ell' m' m'_s, k\ell m m^*_s}(E, P) = i\delta_{k'k} 2\omega_k L^3 \mathcal{K}_2(\ell' m' m'_s, \ell m m^*_s)(E^*_2, k)
\]

\[
\mathcal{K}_2(\ell' m' m'_s, \ell m m^*_s)(E^*_2, k) = \delta_{m'_s(k)m_s(k)} \mathcal{K}_2[\ell' m' (a^*)m'_s(b^*)], [\ell m m^*_s(a^*)m_s(b^*)](E^*_2, k)
\]

- Can convert $\mathcal{K}_2$ indices to total dimer spin: $\{\ell m s \mu_s\}$
  - Antisymmetry $\Rightarrow s = 0$ and $s = 1$ have opposite parities and do not mix
  - And then to total dimer angular momentum: $\{j \mu_j\}$
    - $s = 0 \Rightarrow$ even $\ell = j \Rightarrow$ single channel described by phase shift
    - $s = 1 \Rightarrow$ odd $\ell \Rightarrow j = \ell - 1, \ell, \ell + 1 \Rightarrow$ for even $j > 0$ have two-channel mixing
Final results

- Quantization condition (boldface quantities absorb factors of $i$, $2\omega$, $L^3$)

$$\det_{k,\ell,m,m^*_3} [F^{-1}_3 - K_{df,3}] = 0 \quad F_3 = F/3 + F \frac{1}{K_{2}^{-1} - F - G} F$$

- In practice, must truncate in $\ell$ so that matrices have finite dimension

- Integral equations relating $K_{df,3}$ and $\mathcal{M}_3$ take similar form to those for scalar particles, aside from extra spin indices and Wigner D-matrices

- Range of validity for (isosymmetric) QCD

$$\sqrt{4m_N^2 - m_\pi^2 + m_N} < E_3^* < 3m_N + m_\pi$$

2-particle subchannel LH cut \quad Inelastic threshold
Threshold expansion for $\mathcal{H}_{\text{df},3}$

- Need parametrization of $\mathcal{H}_{\text{df},3}$ in order to apply QC3 in practice

- Expand about threshold; analogous to effective-range expansion for $\mathcal{H}_2$
  - Similar to NR expansion in pionless EFT, except using relativistic fields

- Method: use neutron field operators $\mathcal{N}$
  - Write down all operators of the form $(\mathcal{N} \mathcal{N})^3$ with arbitrary gamma-matrix structure and 0, 2, 4,… derivatives, requiring Lorentz and parity invariance
  - Take matrix elements of these operators between lab-frame states, leading to completely antisymmetric expressions in terms of Dirac spinors (in lab frame)
  - Determine which are independent
  - Insert NR expression for Dirac spinors, and expand in 3-momenta
Operators without derivatives

- 12 operators (have not used Fierz identities)

\[
\begin{align*}
O_{SSS}(x) &= [\bar{N}(x)\gamma^5 N(x)]^3, \\
O_{SPP} &= [\bar{N}\gamma^\mu N][\bar{N}\gamma_5 N]\gamma^\mu N, \\
O_{SVV} &= [\bar{N}\gamma^\mu N][\bar{N}\gamma_5 N]\gamma^\nu N, \\
O_{SAA} &= [\bar{N}\gamma_5 N][\bar{N}\gamma^\mu N][\bar{N}\gamma^\mu N], \\
O_{STT} &= [\bar{N}\gamma^5 N][\bar{N}\sigma_{\mu\nu}\gamma^\ell N][\bar{N}\sigma_{\mu\nu} N], \\
O_{PVA} &= [\bar{N}\gamma^\mu N][\bar{N}\gamma_5 N][\bar{N}\gamma^\mu N], \\
O_{PTT'} &= [\bar{N}\gamma_5 N][\bar{N}\sigma_{\mu\nu}\gamma^\ell N][\bar{N}\sigma_{\mu\nu} N], \\
O_{TVV} &= [\bar{N}\sigma_{\mu\nu} N][\bar{N}\gamma^\mu N][\bar{N}\gamma^\nu N], \\
O_{TAA} &= [\bar{N}\sigma_{\mu\nu} N][\bar{N}\gamma^\mu N][\bar{N}\gamma^\nu N], \\
O_{TVA} &= [\bar{N}\sigma_{\mu\nu}\gamma^5 N][\bar{N}\gamma^\mu N][\bar{N}\gamma^\nu N], \\
O_{TTT} &= [\bar{N}\sigma_{\mu\nu} N][\bar{N}\sigma_{\nu\rho} N][\bar{N}\sigma_{\rho\mu} N], \\
O_{TTT'} &= [\bar{N}\sigma_{\mu\nu} N][\bar{N}\sigma_{\nu\rho} N][\bar{N}\sigma_{\mu\rho} N],
\end{align*}
\]

- All lead to identical $3 \to 3$ amplitudes (cf. four independent forms for $2 \to 2$)

- Insert NR on-shell form, and find leading contribution to $\mathcal{K}_{df,3}$ involves 2 derivatives:

\[
u_k = \sqrt{2\omega_k} \left( \frac{\chi_k}{\omega_k + m} \chi_k \right) \quad \Rightarrow \quad \mathcal{K}_A = \overline{A} \left( \chi_{k'}^{a'} \sigma \cdot k' \sigma \cdot k \chi_k (\chi_{a'}^{a} \chi_{a}) (\chi_{b'}^{b} \chi_{b}) \right)
\]

antisymmetrization

S. Sharpe, `Overview of 3-particle methods,” Santa Fe workshop, 8/8/23
Operators with 2 derivatives

- For consistency, need to consider operators with 2 derivatives
  - Using Fierz identities and EoM, find 22 independent operators

\[
\begin{align*}
SSS &= (\partial^\mu \bar{N} \partial_\mu N)(\bar{N}N)(\bar{N}N), \\
SPP &= (\partial^\mu \bar{N} \partial_\mu N)(\bar{N} \gamma_5 N)(\bar{N} \gamma_5 N), \\
PSP &= (\partial^\mu \bar{N} \gamma_5 \partial_\mu N)(\bar{N}N)(\bar{N} \gamma_5 N), \\
SVV &= (\partial^\mu \bar{N} \partial_\mu N)(\bar{N} \gamma_\nu N)(\bar{N} \gamma_\nu N), \\
VSV &= (\partial^\mu \bar{N} \gamma_\nu \partial_\mu N)(\bar{N}N)(\bar{N} \gamma_\nu N), \\
ASA &= (\partial^\mu \bar{N} \gamma_\nu \gamma_5 \partial_\mu N)(\bar{N}N)(\bar{N} \gamma_\nu \gamma_5 N), \\
TST &= (\partial^\mu \bar{N} \sigma_{\nu\rho} \partial_\mu N)(\bar{N}N)(\bar{N} \sigma^{\nu\rho} N), \\
PVA &= (\partial^\mu \bar{N} \gamma_5 \partial_\mu N)(\bar{N} \gamma_\nu N)(\bar{N} \gamma_\nu \gamma_5 N), \\
VAP &= (\partial^\mu \bar{N} \gamma_\nu \gamma_5 \partial_\mu N)(\bar{N} \gamma_\nu N)(\bar{N} \gamma_5 N), \\
APV &= (\partial^\mu \bar{N} \gamma_\nu \gamma_5 \partial_\mu N)(\bar{N} \gamma_5 N)(\bar{N} \gamma_\nu N), \\
SVV' &= (\partial^\mu \bar{N} \partial_\mu N)(\bar{N} \gamma_\mu N)(\bar{N} \gamma_\nu N), \\
TST' &= (\partial^\nu \bar{N} \sigma_{\mu\rho} \partial_\mu N)(\bar{N}N)(\bar{N} \sigma^{\nu\rho} N), \\
PV A' &= (\partial^\mu \bar{N} \gamma_5 \partial_\nu N)(\bar{N} \gamma_\mu N)(\bar{N} \gamma_\nu \gamma_5 N), \\
VV V' &= (\partial^\mu \bar{N} \gamma_\nu \partial_\nu N)(\bar{N} \gamma_\mu N)(\bar{N} \gamma_\nu N), \\
AT A' &= (\partial^\mu \bar{N} \gamma_\nu \gamma_5 \partial_\nu N)(\bar{N} \sigma^{\nu\rho} N)(\bar{N} \gamma_\mu \gamma_5 N), \\
TT T' &= (\partial^\mu \bar{N} \sigma_{\mu\rho} \partial_\nu N)(\bar{N} \sigma^{\nu\rho} N)(\bar{N} \sigma_{\nu\rho} N), \\
TT T'' &= (\partial^\nu \bar{N} \sigma_{\mu\rho} \partial_\nu N)(\bar{N} \sigma^{\nu\rho} N)(\bar{N} \sigma_{\nu\rho} N), \\
TT T''' &= (\partial^\nu \bar{N} \sigma_{\mu\rho} \partial_\nu N)(\bar{N} \sigma^{\nu\rho} N)(\bar{N} \sigma_{\nu\rho} N), \\
TT T_5 P' &= (\partial^\mu \bar{N} \sigma_{\mu\rho} \partial_\nu N)(\bar{N} \sigma^{\nu\rho} \gamma_5 N)(\bar{N} \gamma_5 N), \\
T_{5VA}' &= (\partial^\mu \bar{N} \sigma_{\mu\nu} \gamma_5 \partial_\nu N)(\bar{N} \gamma_\mu N)(\bar{N} \gamma_5 N), \\
T_{5VA}'' &= (\partial^\mu \bar{N} \sigma_{\mu\nu} \gamma_5 \partial_\nu N)(\bar{N} \gamma_\mu N)(\bar{N} \gamma_\nu N), \\
T_{5TT_5}' &= (\partial^\mu \bar{N} \sigma_{\mu\nu} \gamma_5 \partial_\nu N)(\bar{N} \sigma^{\nu\rho} N)(\bar{N} \sigma_{\nu\rho} \gamma_5 N) \\
\end{align*}
\]

- Inserting NR on-shell form, find two independent 2-derivatives forms:

\[
\begin{align*}
\mathcal{K}_A &= \bar{A} \left[ (\chi_{k'}^\dagger \sigma \cdot k' \sigma \cdot k \chi_k) (\chi_{a'}^\dagger \chi_a) (\chi_{b'}^\dagger \chi_b) \right], \\
\mathcal{K}_B &= \bar{A} \left[ k' \cdot k (\chi_{k'}^\dagger \chi_k) (\chi_{a'}^\dagger \chi_a) (\chi_{b'}^\dagger \chi_b) \right]
\end{align*}
\]

Same as from 0-derivative operators
Summary for $\mathcal{K}_{df,3}$

- 0-derivative operators contribute

$\frac{m_N^2}{m_N^2} \mathcal{K}_{df,3} \supset \frac{c_0}{m_N^2} \mathcal{K}_A + \mathcal{O}(k^4/m_N^4)$

- 2-derivative operators imply

$\frac{m_N^2}{m_N^2} \mathcal{K}_{df,3} \supset \frac{c_1}{\Lambda_{EFT}^2} \mathcal{K}_A + \frac{c_2}{\Lambda_{EFT}^2} \mathcal{K}_B + \mathcal{O}(k^4/m_N^2 \Lambda_{EFT}^2)$

- Since expect $\Lambda_{EFT} \sim m_\pi$, the 2-derivative operators dominate

- The form of the allowed operators could more easily have been determined directly using a NR expansion, but this would lose the implications of relativity at higher order
Summary & Outlook for 3N

- Including spin in the formalism involves additional subtleties not present for 2 particles
  - Wigner rotations and fermion signs
- Implementing the QC3 is underway for toy interactions [including Wilder Schaaf]
- Various generalizations should be straightforward
  - 3 nucleons of arbitrary isospin [underway]
  - $N\pi\pi$ at maximal isospin (no 3-particle resonance, but includes $\Delta\pi$)
  - $N\pi\pi + N\pi$ (for the Roper)
  - Higher spins (e.g. $\rho$ if stable)—though hard to think of applications
- Need to extend methods for solving integral equations
- Need to relate parameters in $K_{df,3}$ to those in chiral EFTs used to study light nuclei
Summary & Outlook
Summary

- Two-particle sector is entering precision phase
  - Frontier is two nucleons, which are more challenging for LQCD
- Major steps have been taken in the three-particle sector
  - Formalism well established & cross checked, and almost complete
  - Several applications to three-particle spectra from LQCD
  - Initial discrepancy with LO ChPT explained by large NLO contributions
  - Integral equations solved in several cases
  - Path to a calculation of $K \to 3\pi$ decay amplitudes is now open
Outlook

- Generalize formalism to broaden applications
  - 3 nucleons with $I = \frac{1}{2}$ (nnp & ppn)
  - Accessing the WZW term: $K\bar{K} \leftrightarrow \pi^+\pi^0\pi^-(I = 0)$
  - $N(1440, J^P = \frac{1}{2}^+ ) \rightarrow N\pi, N\pi\pi$
  - $J^{PC}, I^G = 1^{-+}, 1^- : \pi_1(1600) \rightarrow \eta\pi, 3\pi, KK\pi\pi, \eta\pi\pi\pi, 5\pi$

- Extend implementations using LQCD simulations
  - $3\pi^+, 3K^+, \pi^+\pi^+K^+, K^+K^+\pi^+$ at physical quark masses
  - I=0,1 three-particle resonances ($\omega, a_1, \ldots$)

- Extend applications of integral equations in the presence of three-particle resonances, e.g. $T_{cc}$

- Move on to 4 particles!
The Exo(tic) Had(ron) Collaboration started in 2023 to explore all aspects of exotic hadron physics, from predictions within lattice QCD, through reliable extraction of their existence and properties from experimental data, to descriptions of their structure within phenomenological models.
Thank you!
Questions?
References
Max Hansen & SRS:

“Relativistic, model-independent, three-particle quantization condition,”

arXiv:1408.5933 (PRD) [HS14]

“Expressing the 3-particle finite-volume spectrum in terms of the 3-to-3 scattering amplitude,”

arXiv:1504.04028 (PRD) [HS15]

“Perturbative results for 2- & 3-particle threshold energies in finite volume,”

arXiv:1509.07929 (PRD) [HSPT15]

“Threshold expansion of the 3-particle quantization condition,”

arXiv:1602.00324 (PRD) [HSTH15]

“Applying the relativistic quantization condition to a 3-particle bound state in a periodic box,”

arXiv: 1609.04317 (PRD) [HSBS16]

“Lattice QCD and three-particle decays of Resonances,”

Raúl Briceño, Max Hansen & SRS:
“Relating the finite-volume spectrum and the 2-and-3-particle S-matrix for relativistic systems of identical scalar particles,”
arXiv:1701.07465 (PRD) [BHS17]
“Numerical study of the relativistic three-body quantization condition in the isotropic approximation,”
arXiv:1803.04169 (PRD) [BHS18]

SRS
“Testing the threshold expansion for three-particle energies at fourth order in $\phi^4$ theory,”
arXiv:1707.04279 (PRD) [SPT17]

Tyler Blanton, Fernando Romero-López & SRS:
“Implementing the three-particle quantization condition including higher partial waves,” arXiv:1901.07095 (JHEP) [BRS19]
“I=3 three-pion scattering amplitude from lattice QCD,”
arXiv:1909.02973 (PRL) [BRS-PRL19]
“Implementing the three-particle quantization condition for $\pi^+\pi^+K^+$ and related systems” 2111.12734 (JHEP)
Tyler Blanton, Raúl Briceño, Max Hansen, Fernando Romero-López, SRS:


Raúl Briceño, Max Hansen, SRS & Adam Szczepaniak:

“Unitarity of the infinite-volume three-particle scattering amplitude arising from a finite-volume formalism,”
arXiv:1905.11188 (PRD)

Andrew Jackura, S. Dawid, C. Fernández-Ramírez, V. Mathieu, M. Mikhasenko, A. Pilloni, SRS & A. Szczepaniak:

“On the Equivalence of Three-Particle Scattering Formalisms,”
arXiv:1905.12007 (PRD)

Max Hansen, Fernando Romero-López, SRS:

“Generalizing the relativistic quantization condition to include all three-pion isospin channels”, arXiv:2003.10974 (JHEP) [HRS20]

“Decay amplitudes to three particles from finite-volume matrix elements,”
arXiv: 2101.10246 (JHEP)
Tyler Blanton & SRS:
“Alternative derivation of the relativistic three-particle quantization condition,”
arXiv:2007.16188 (PRD) [BS20a]

“Equivalence of relativistic three-particle quantization conditions,”
arXiv:2007.16190 (PRD) [BS20b]

“Relativistic three-particle quantization condition for nondegenerate scalars,”

“Three-particle finite-volume formalism for $\pi^+\pi^+K^+$ & related systems,” arXiv:2105.12904 (PRD)

Tyler Blanton, Drew Hanlon, Ben Hörz, Colin Morningstar, Fernando Romero-López & SRS

“$3\pi^+ & 3K^+$ interactions beyond leading order from lattice QCD,” arXiv:2106.05590 (JHEP)

Zack Draper, Drew Hanlon, Ben Hörz, Colin Morningstar, Fernando Romero-López & SRS

“Interactions of $\pi K$, $\pi\pi K$ and $KK\pi$ systems at maximal isospin from lattice QCD,” arXiv:2302.13587

Other work

★ Implementing RFT integral equations

- M.T. Hansen et al. (HADSPEC), 2009.04931, PRL [Calculating $3\pi^+$ spectrum and using to determine three-particle scattering amplitude]

- A. Jackura et al., 2010.09820, PRD [Solving s-wave RFT integral equations in presence of bound states]

- S. Dawid, Md. Islam and R. Briceño, 2303.04394 [Analytic continuation of 3-particle amplitudes]

★ Reviews

- A. Rusetsky, 1911.01253 [LATTICE 2019 plenary]

- M. Mai, M. Döring and A. Rusetsky, 2103.00577 [Review of formalisms and chiral extrapolations]

- F. Romero-López, 2112.05170, [Three-particle scattering amplitudes from lattice QCD]

★ Other numerical simulations

- F. Romero-López, A. Rusetsky, C. Urbach, 1806.02367, JHEP [2- & 3-body interactions in $\phi^4$ theory]

- M. Fischer et al., 2008.03035, Eur.Phys.J.C [2$\pi^+$ & 3$\pi^+$ at physical masses]

- M. Garofolo et al., 2211.05605, JHEP [3-body resonances in $\phi^4$ theory]
Other work

★ NREFT approach


- M. Döring et al., 1802.03362, PRD [Numerical implementation]

- J.-Y. Pang et al., 1902.01111, PRD [large volume expansion for excited levels]

- F. Müller, T. Yu & A. Rusetsky, 2011.14178, PRD [large volume expansion for I=1 three pion ground state]


- J-Y. Pang, M. Ebert, H-W. Hammer, F. Müller, A. Rusetsky, 2204.04807, JHEP, [Spurious poles in a finite volume]

- F. Müller, J-Y. Pang, A. Rusetsky, J-J. Wu, 2110.09351, JHEP [Relativistic-invariant formulation of the NREFT three-particle quantization condition]

- J. Lozano, U. Meißner, F. Romero-López, A. Rusetsky & G. Schierholz, 2205.11316, JHEP [Resonance form factors from finite-volume correlation functions with the external field method]

- F. Müller, J-Y. Pang, A. Rusetsky, J-J. Wu, 2211.10126, JHEP [3-particle Lellouch-Lüscher formalism in moving frames]

- R. Bubna, F. Müller, A. Rusetsky, 2304.13635 [Finite-volume energy shift of the three-nucleon ground state]
Alternate 3-particle approaches

★ Finite-volume unitarity (FVU) approach

- M. Mai & M. Döring, 1709.08222, EPJA [formalism]
- M. Mai et al., 1706.06118, EPJA [unitary parametrization of $M_3$ involving R matrix; used in FVU approach]
- A. Jackura et al., 1809.10523, EPJC [further analysis of R matrix parametrization]
- M. Mai & M. Döring, 1807.04746, PRL [3 pion spectrum at finite-volume from FVU]
- M. Mai et al., 1909.05749, PRD [applying FVU approach to $3\pi^+$ spectrum from Hanlon & Hörz]
- C. Culver et al., 1911.09047, PRD [calculating $3\pi^+$ spectrum and comparing with FVU predictions]
- A. Alexandru et al., 2009.12358, PRD [calculating $3K^-$ spectrum and comparing with FVU predictions]
- R. Brett et al., 2101.06144, PRD [determining $3\pi^+$ interaction from LQCD spectrum]
- M. Mai et al., 2107.03973, PRL [three-body dynamics of the $a_1(1260)$ from LQCD]
- D. Dasadivan et al., 2112.03355, PRD [pole position of $a_1(1260)$ in a unitary framework]

★ HALQCD approach

- T. Doi et al. (HALQCD collab.), 1106.2276, Prog.Theor.Phys. [3 nucleon potentials in NR regime]
Backup slides
Divergence-free K matrix

- $K_{df,3}$ has the same symmetries as $M_3$: relativistic invariance, particle interchange, T-reversal

- $M_2, K_2$
  - 12 momentum components
  - 10 Poincaré generators
  - 2 degrees of freedom
    - $s = E^2 + \theta$

- $M_3, K_{df,3}$
  - 18 momentum components
  - 10 Poincaré generators
  - 8 degrees of freedom
    - $s = E^2 + 7 \text{ “angles”}$

- Need more parameters to describe $K_{df,3}$ than $K_2$ (will be discussed in lecture 3)

- Why $K_2$ and $K_{df,3}$ appear in QC3, rather than $M_2$ and $M_{df,3}$, will be explained shortly