Multiparticle systems in lattice QCD

Steve Sharpe University of Washington

Outline

Overview of present status

• Single particle masses

L	
	\longleftrightarrow

R (interaction range)

For large enough boxes (L>2R) dominant finite-volume effects for singleparticle states fall as $exp(-M_{\pi}L)$ [Lüscher 86,91] and can be made small

• Single particle masses and matrix elements

For large enough boxes (L>2R) dominant finite-volume effects for singleparticle states fall as $exp(-M_{\pi}L)$ [Lüscher 86,91] and can be made small

• Single particle masses and matrix elements

Euclidean time ->

Flavo(u)r Lattice Averaging Group

Eur. Phys. J. C (2017) 77:112 DOI 10.1140/epjc/s10052-016-4509-7 THE EUROPEAN PHYSICAL JOURNAL C

Review

Review of lattice results concerning low-energy particle physics

Flavour Lattice Averaging Group (FLAG)

S. Aoki¹, Y. Aoki^{2,3,17}, D. Bečirević⁴, C. Bernard⁵, T. Blum^{3,6}, G. Colangelo⁷, M. Della Morte^{8,9}, P. Dimopoulos^{10,11}, S. Dürr^{12,13}, H. Fukaya¹⁴, M. Golterman¹⁵, Steven Gottlieb¹⁶, S. Hashimoto^{17,18}, U. M. Heller¹⁹, R. Horsley²⁰, A. Jüttner^{21,a}, T. Kaneko^{17,18}, L. Lellouch²², H. Leutwyler⁷, C.-J. D. Lin^{22,23}, V. Lubicz^{24,25}, E. Lunghi¹⁶, R. Mawhinney²⁶, T. Onogi¹⁴, C. Pena²⁷, C. T. Sachrajda²¹, S. R. Sharpe²⁸, S. Simula²⁵, R. Sommer²⁹, A. Vladikas³⁰, U. Wenger⁷, H. Wittig³¹

Reviews every 2⁺ years: provide "vetted" averages

Flavo(u)r Lattice Averaging Group

Eur. Phys. J. C (2017) 77:112 DOI 10.1140/epjc/s10052-016-4509-7 THE EUROPEAN PHYSICAL JOURNAL C

Review

Review of lattice results concerning low-energy particle physics

Flavour Lattice Averaging Group (FLAG)

S. Aoki¹, J. Aoki^{2,3,17}, D. Bečirević⁴, C. Bernard⁵, T. Blum^{3,6}, G. Colangelo⁵, M. Della Morte^{8,9}, P. Dimopoulos^{10,11}, S. Dürr¹², H. Fukaya¹⁴, M. Golterman⁵, Steven Gottlieb¹⁶, S. Hashimoto^{17,18}, U. M. Heller¹⁹, R. Horsley²⁰, A. Jüttner^{21,a}, T. Kaneko^{17,10}, L. Lellouch²⁵, H. Leutwyler⁷, C.-J. D. Lin^{22,23}, V. Lubicz^{24,25}, E. Lunghi¹⁶, R. Mawhinney²⁶, T. Onogi¹⁴, C. Pena²⁷, C. T. Sachrajda²¹, S. R. Sharpe³⁸, S. Simula²⁵, R. Sommer²⁹, A. Vladikas³⁰, U. Wenger⁷, H. Wittig³¹

Reviews every 2⁺ years: provide "vetted" averages

• Example from FLAG16: $K \rightarrow \pi$ form factor

e.g. $\pi K \leftrightarrow \eta K, \pi \pi \leftrightarrow \overline{K} K$

- Issues associated with 2 particles (I/Lⁿ finite-volume effects,...) are theoretically understood [Lüscher, ...]
- Can extract scattering amplitudes—infinite-volume quantities
- Numerical implementations expanding rapidly despite computational challenges

[Dudek, Edwards, Thomas & Wilson arXiv:1406.4158]

 Theory for multiple two-particle channels [He, Feng, Liu 05;
Briceño & Davoudi 12;
Hansen & SRS 12]

S. Sharpe, "Multiparticle systems in LQCD" 8/28/2017, Santa Fe

e.g. $K \rightarrow \pi\pi$ decay amplitudes

- Issues associated with 2 particles (I/Lⁿ finite-volume effects,...) are theoretically understood [Lellouch & Lüscher, ...]
- First lattice results obtained for decay rates (consistent with $\Delta I = \frac{1}{2}$ rule) and for ϵ'/ϵ [RBC/UKQCD]

e.g. $\pi\gamma \rightarrow \tilde{\rho}$ amplitude

 Issues associated with 2 particles (I/Lⁿ finite-volume effects,...) are theoretically understood [Briceño, Hansen & Walker-Loud, ...]

Briceño, Dudek, Edwards, Shultz, Thomas, Wilson [HadSpec collab.] arXiv:1604.03530

• Results also from [Leskovic, ..., Meinel,, arXiv:1611:00282]

e.g. $B \rightarrow K^* \mid v \rightarrow K \pi \mid v \text{ decay amplitude}$

 Issues associated with 2 particles (I/Lⁿ finite-volume effects,...) are theoretically understood [Briceño, Hansen & Walker-Loud, ...]

e.g. `` ρ " form factor

- Issues associated with 2 particles (I/Lⁿ finite-volume effects,...) are theoretically understood [Bernard et al.,Briceño & Hansen]
- Not yet implemented in simulations

Just beyond the frontier

Just beyond the frontier

Just beyond the frontier

- Simulations access the three-particle region of the spectrum
- What can we learn from them?
- Why do we care?

Motivation(s) for studying three (or more) particles

Resonances

• Studying resonances with three particle decay channels

e.g.
$$\omega(782) \rightarrow \pi\pi\pi$$
 $N(1440) \rightarrow N\pi\pi$

Resonances

• Studying resonances with three particle decay channels

e.g. $\omega(782) \rightarrow \pi\pi\pi$ $N(1440) \rightarrow N\pi\pi$

 N.B. If a resonance has both 2- and 3-particle strong decays, then 2-particle methods fail—channels cannot be separated as they can in an experiment

Resonances

Dudek, Edwards, Guo & C.Thomas [HadSpec], arXiv: 1309.2608

Weak decays

Weak decays

 Calculating weak decay amplitudes/form factors involving 3 particles, e.g. K→πππ

Weak decays

 Calculating weak decay amplitudes/form factors involving 3 particles, e.g. K→πππ

• N.B. Can study weak $K \rightarrow 2\pi$ decays independently of $K \rightarrow 3\pi$, since strong interactions do not mix these final states (in isospin-symmetric limit)

A more distant motivation

- Calculating CP-violation in $D \rightarrow \pi \pi$, K \overline{K} in the Standard Model
- Finite-volume state is a mix of 2π , $K\overline{K}$, $\eta\eta$, 4π , 6π , ...
- Need 4 (or more) particles in the box!

3-body interactions

3-body interactions

• Determining NNN interaction

- Input for effective field theory treatments of larger nuclei & nuclear matter
- Similarly, $\pi\pi\pi$, $\pi K\overline{K}$, ... interactions needed for study of pion/kaon condensation

Inclusive decays

Inclusive decays

- $B \rightarrow X_u | v, B \rightarrow X_c | v$, etc. involve many channels containing multiple strongly-interacting particles
 - Extending Lellouch-Lüscher approach seems impossibly complicated
 - Alternative approaches using smearing of Euclidean-time correlators are promising
 - Hansen, Meyer & Robaina [arXiv:1704.08993]—see later today
 - Optical potential [Agadjanov et al., arXiv: 1603.07205]
 - Optical theorem at subthreshold kinematics [Hashimoto, arXiv: 1703.01881]
 - Shape function [Aglietti *et al.*, hep-ph/9804416]
 - Long distance contributions to ΔM_K [Christ, Feng, Martinelli & Sachrajda, 1504.01170]

 Related ideas apply to light-cone wave functions and structure functions

Overview of theoretical issues for 2 and 3 particles

The fundamental issue

The fundamental issue

• Lattice simulations are done in finite volumes

The fundamental issue

- Lattice simulations are done in finite volumes
- Experiments are not

The fundamental issue

- Lattice simulations are done in finite volumes
- Experiments are not

How do we connect these?

The fundamental issue

- Lattice QCD can calculate energy levels of multiparticle systems in a box
- How are these related to infinite-volume scattering amplitudes (which determine resonance properties)?

$E_2(L)$ $E_1(L)$	$i\mathcal{M}_{n ightarrow m}$
Discrete energy	Scattering
spectrum	amplitudes

The fundamental issue

- Lattice QCD can calculate energy levels of multiparticle systems in a box
- How are these related to infinite-volume scattering amplitudes (which determine resonance properties)?

When is the spectrum related to scattering amplitudes?

Single (stable) particle with L>R Particle not "squeezed" Spectrum same as in infinite volume up to corrections proportional to $e^{-M_{\pi}L}$ [Lüscher]

When is the spectrum related to scattering amplitudes?

R (interaction range)

Single (stable) particle with L>R Particle not "squeezed" Spectrum same as in infinite volume up to corrections proportional to $e^{-M_{\pi}L}$ [Lüscher]

L<2R No "outside" region. Spectrum NOT related to scatt. amps. Depends on finite-density properties

When is the spectrum related to scattering amplitudes?

R (interaction range)

Single (stable) particle with L>R Particle not "squeezed" Spectrum same as in infinite volume up to corrections proportional to $e^{-M_{\pi}L}$ [Lüscher]

L>2R

There is an "outside" region. Spectrum IS related to scatt. amps. up to corrections proportional to $e^{-M_{\pi}L}$ [Lüscher] Theoretically understood; numerical implementations mature.

...and for 3 particles?

- Spectrum IS related to 2→2, 2→3 & 3→3 scattering amplitudes up to corrections proportional to e^{-ML}
 [Polejaeva & Rusetsky]
- General relativistic formalism developed in various cases
 [Hansen & SRS, Briceño, Hansen & SRS]
- Formalism based on NREFT recently proposed [Hammer, Pang & Rusetsky]
- Practical applicability under investigation

HALQCD method

- Alternative approach, followed by the HALQCD collaboration [Aoki et al.], using the Bethe-Salpeter wave-function calculated with lattice QCD to determine potentials and from these, by solving the Schrödinger equation, scattering amplitudes
- Extended from 2-particle to 3- (and higher) particle case in non-relativistic domain
- Potentially more powerful than the Lüscher-like methods I discuss today, but based on certain assumptions

Two-particle results

Single-channel 2-particle quantization condition

[Lüscher 86 & 91; Rummukainen & Gottlieb 85; Kim, Sachrajda & SRS 05; ...]

- Two particles (say pions) in cubic box of size L with PBC and total momentum P
- Below inelastic threshold (4 pions), the finite-volume spectrum E₁, E₂, ... is given by solutions to a secular equation in partial-wave (*l,m*) space (up to exponentially suppressed corrections)

- $\mathcal{K}_2 \sim \tan \delta/q$ is the K-matrix, which is diagonal in *l,m* space
- F_{PV} is a known kinematical "zeta-function", depending on the box shape & E; It is an off-diagonal matrix in *l,m*, since the box violates rotation symmetry

Finite-volume function

$$F_{2;\ell'm';\ell m}(E,\vec{P}) \equiv \frac{1}{2} \left[\frac{1}{L^3} \sum_{\vec{p}} -PV \int \frac{d^3p}{(2\pi)^3} \right] \frac{4\pi Y_{\ell'm'}(\hat{p}^*)Y_{\ell,m}(\hat{p}^*)}{2\omega_p 2\omega_{Pp}(E - \omega_p - \omega_{Pp})} \left(\frac{p^*}{q^*} \right)^{\ell+\ell'} h(\vec{p})$$

$$\propto \left(\frac{2\pi}{L} \right)^{1+\ell'+\ell'} \mathcal{Z}_{\ell',m';\ell,m}(x^2, \mathbf{n}_P) \qquad q^* = \text{on-shell CM}$$
momentum
$$x = q^* L/(2\pi) \qquad \mathbf{n}_P = \mathbf{P}L/(2\pi)$$

"Zeta-functions"

FIG. 29. The functions $Z_{4,0}(1; \tilde{q}^2)$ (left panel) and $Z_{6,0}(1; \tilde{q}^2)$ (right panel).

Single-channel 2-particle quantization condition

• Infinite-dimensional determinant must be truncated to be practical; truncate by assuming that \mathcal{K}_2 vanishes above l_{max}

[Dudek, Edwards & Thomas, 1212.0830]

• Proof of principle calculation with $M_{\pi} \sim 400$ MeV, several P, many spectral levels

[Dudek, Edwards & Thomas, 1212.0830]

• Proof of principle calculation with $M_{\pi} \sim 400$ MeV, several P, many spectral levels

[Dudek, Edwards & Thomas, 1212.0830]

S. Sharpe, "Multiparticle systems in LQCD" 8/28/2017, Santa Fe

[Dudek, Edwards & Thomas, 1212.0830]

S. Sharpe, "Multiparticle systems in LQCD" 8/28/2017, Santa Fe

State of the art: coupled 2-body channels

Same form of quantization condition holds, but matrices include extra channel index [Meißner et al., Briceño & Davoudi, Hansen & SRS]

S. Sharpe, "Multiparticle systems in LQCD" 8/28/2017, Santa Fe

Three-particle results using relativistic formalism

3-Particle analysis [Hansen & SRS, Briceño, Hansen & SRS]

• Work in continuum (assume that LQCD can control discretization errors)

- Cubic box of size L with periodic BC, and infinite (Minkowski) time
 - Spatial loops are sums:

- $\frac{1}{L^3}\sum_{\vec{k}} \qquad \vec{k} = \frac{2\pi}{L}\vec{n}$
- Consider identical scalar particles with physical mass m, interacting <u>arbitrarily</u> in a general relativistic effective field theory

3-Particle analysis [Hansen & SRS, Briceño, Hansen & SRS]

• Work in continuum (assume that LQCD can control discretization errors)

- Cubic box of size L with periodic BC, and infinite (Minkowski) time
 - Spatial loops are sums:

- $\frac{1}{L^3}\sum_{\vec{k}} \qquad \vec{k} = \frac{2\pi}{L}\vec{n}$
- Consider identical scalar particles with physical mass m, interacting <u>arbitrarily</u> in a general relativistic effective field theory

For simplicity, first show the result with Z₂ symmetric theory with even-legged vertices

Methodology

- On-shell cuts or cusps imply sum-integral differences have 1/Lⁿ difference
 - ⇒ Keep track of cuts to all orders, and remove cusps with PV pole prescription
 - \Rightarrow Subtract above-threshold divergences of 3-particle scattering amplitude

3-particle quantization condition with Z₂ symmetry [Hansen & SRS, arXiv:1408.5933]

[Hansen & SRS, arXiv:1408.5933]

• Spectrum is determined (for given L, P) by solutions of

$$\det\left[F_3^{-1} + \mathcal{K}_{3,\mathrm{df}}\right] = 0$$

[Hansen & SRS, arXiv:1408.5933]

• Spectrum is determined (for given L, P) by solutions of

Infinite-volume real 3-particle scattering quantity

$$\det\left[F_3^{-1} + \mathcal{K}_{3,\mathrm{df}}\right] = 0$$

[Hansen & SRS, arXiv:1408.5933]

• Spectrum is determined (for given L, P) by solutions of

Infinite-volume real 3-particle scattering quantity

$$\det\left[F_3^{-1} + \mathcal{K}_{3,\mathrm{df}}\right] = 0$$

$$F_3 = \frac{F_{\widetilde{\mathrm{PV}}}}{2\omega L^3} \left[-\frac{2}{3} + \frac{1}{1 + (1 + \mathcal{K}_2 G)^{-1} \mathcal{K}_2 F_{\widetilde{\mathrm{PV}}}} \right]$$

$$G_{p,\ell',m';k,\ell,m} \equiv \left(\frac{k^*}{q_p^*}\right)^{\ell'} \frac{4\pi Y_{\ell',m'}(\hat{k}^*)H(\vec{p}\,)H(\vec{k}\,)Y_{\ell,m}^*(\hat{p}^*)}{2\omega_{kp}(E-\omega_k-\omega_p-\omega_{kp})} \left(\frac{p^*}{q_k^*}\right)^{\ell} \frac{1}{2\omega_k L^3}$$

quantity containing cut-off function H

Superficially similar to 2-particle form ...

$$\det\left[F_{\rm PV} + \mathcal{K}_2^{-1}\right] = 0$$

kinematical quantity containing cut-off function H

• ... but F₃ contains both kinematical, finite-volume quantities (F_{PV} & G) and the dynamical, infinite-volume quantity \mathcal{K}_2

$$\det\left[F_3^{-1} + \mathcal{K}_{3,\mathrm{df}}\right] = 0$$

• All quantities are (infinite-dimensional) matrices, e.g. (F₃) _{k lm; p l'm'}, with indices

[finite volume "spectator" momentum: $\mathbf{k}=2\pi\mathbf{n}/L$] x [2-particle CM angular momentum: l,m]

Three on-shell particles with total energy-momentum (E, \mathbf{P})

 For large k other two particles are below threshold; must include such configurations by analytic continuation up to a cut-off at k~m [provided by H(k)]

$$\det\left[F_3^{-1} + \mathcal{K}_{3,\mathrm{df}}\right] = 0$$

- Important limitation: our present derivation requires that \mathcal{K}_2 in all two-particle channels has no poles (above or below threshold)
 - Why? Such poles lead to additional finite-volume dependence not accounted for in the derivation
 - Implies that two-particle bound states or resonances are not allowed
 - We are working on eliminating this limitation

Truncation in 3 particle case

$$\det\left[F_3^{-1} + \mathcal{K}_{3,\mathrm{df}}\right] = 0$$

$$F_3 = \frac{F_{\widetilde{\mathrm{PV}}}}{2\omega L^3} \left[-\frac{2}{3} + \frac{1}{1 + (1 + \mathcal{K}_2 G)^{-1} \mathcal{K}_2 F_{\widetilde{\mathrm{PV}}}} \right]$$

- For fixed E & P, as spectator momentum |k| increases, remaining two-particle system drops below threshold
 - F_{PV} smoothly interpolates to 0 due to H factors; same holds for G
- Thus **k** sum is naturally truncated (with, say, **N** terms required)
 - e.g. if E=4m, **P**=0, mL=5 then N=19 (with [0,0,0], [0,0,1] & [0,1,1] **k** shells)
- I is truncated if both \mathcal{K}_2 and $\mathcal{K}_{df, 3}$ vanish for $I > I_{max}$
- Yields determinant condition truncated to $[N(2l_{max}+I)]^2$ block

Truncation in 3 particle case

$$\det\left[F_3^{-1} + \mathcal{K}_{3,\mathrm{df}}\right] = 0$$

$$F_3 = \frac{F_{\widetilde{\mathrm{PV}}}}{2\omega L^3} \left[-\frac{2}{3} + \frac{1}{1 + (1 + \mathcal{K}_2 G)^{-1} \mathcal{K}_2 F_{\widetilde{\mathrm{PV}}}} \right]$$

- Given prior knowledge of \mathcal{K}_2 (e.g. from 2-particle quantization condition) each energy level E_i of the 3 particle system gives information on $\mathcal{K}_{df,3}$ at the corresponding 3-particle CM energy E_i^{*}
- Probably need to proceed by parametrizing $\mathcal{K}_{df,3}$, in which case one would need at least as many levels as parameters at given energy
- Given \mathcal{K}_2 and $\mathcal{K}_{df,3}$ one can reconstruct \mathcal{M}_3
- ullet The locality of $\mathcal{K}_{ ext{df,3}}$ is crucial for this program
- Clearly very challenging in practice, but there is an existence proof....

Isotropic approximation

- Assume $\mathcal{K}_{df,3}$ is pure s-wave and depends only on E^*
- Also assume \mathcal{K}_2 only non-zero for s-wave ($\Rightarrow I_{max}=0$) and known
- Truncated [N x N] problem simplifies: $\mathcal{K}_{df,3}$ has only 1 non-zero eigenvalue, and problem collapses to a single equation:

$$1 + F_3^{\text{iso}} \mathcal{K}_{df,3}^{\text{iso}}(E^*) = 0$$

Known in terms of two particle scattering amplitude

$$F_3^{\text{iso}} \equiv \sum_{\vec{k},\vec{p}} \frac{1}{2\omega_k L^3} \left[F_{\widetilde{\text{PV}}}^s \left(-\frac{2}{3} + \frac{1}{1 + [1 + \mathcal{K}_2^s G^s]^{-1} \mathcal{K}_2^s F_{\widetilde{\text{PV}}}^s} \right) \right]_{k,p}$$

Numerical exploration underway [5 slide talk]

Relating $\mathcal{K}_{df,3}$ to \mathcal{M}_3

- Three-particle quantization condition depends on $\mathcal{K}_{df,3}$ rather than the three-particle scattering amplitude \mathcal{M}_3
- $\mathcal{K}_{df,3}$ is an infinite-volume quantity (loops involve integrals) but is not physical
 - Depends on the cut-off function H
 - It was forced on us by the analysis, and is a local vertex
- \bullet To complete the quantization condition we must relate $\mathcal{K}_{df,3}$ to \mathcal{M}_3

- to integrals with it pole prescription
- Result is an integral equation giving \mathcal{M}_3 in terms of $\mathcal{K}_{df,3}$
- Requires knowing \mathcal{M}_2 (including continued below threshold)
- Completes formalism—shows that finite-volume spectrum is given by infinite-volume scattering amplitudes

Tests of formalism

- Reproduces threshold expansion [Hansen & SRS, 16]
 - Energy of state nearest threshold is given by a power series in I/L, which can be obtained using NRQM [Beane, Detmold & Savage, 07; Tan 08] or perturbation theory [Hansen & SRS, 16; SRS 17]
- Reproduces volume dependence of Efimov-like threeparticle bound state [Hansen & SRS, 16]
 - Dependence on L can be predicted by NRQM [Meißner, Rios & Rusetsky, 14]

Removing the Z₂ constraint [Briceño, Hansen & SRS]

- Generalization is straightforward in principle, but keeping track of all cuts is more challenging, so we developed a somewhat different approach, based more extensively on time-ordered PT
 - Consider $3m < E^* < 4m$ where both 2- and 3-particle cuts are present
 - Work directly with finite-volume scattering amplitude

Removing the Z₂ constraint

• One of new challenges is dealing with cuts of self-energy diagrams

- Cannot use fully-dressed propagators, requiring some gymnastics to make sure cuts occur at positions of renormalized masses
- Since we continue below three-particle threshold, work is needed to avoid simultaneous two-and three-particle cuts in such diagrams

Removing the Z₂ constraint [Briceño, Hansen & SRS, arXiv:1701.07465]

• Final result can be brought into a familiar form, with an additional channel index

• Shortcoming that \mathcal{K}_2 cannot have poles remains

Comparison with NREFT approach

[Hammer, Park & Rusetsky, arXiv: 1706.07700, 1707.02176]

NREFT approach

 \bullet Expand two and three-particle interactions in powers of p/Λ

e.g.
$$\mathcal{L}_{3}^{LO} = -\frac{D_{0}}{6}\psi^{\dagger}\psi^{\dagger}\psi^{\dagger}\psi\psi\psi$$
 $\mathcal{L}_{3}^{NLO} = -\frac{D_{2}}{12}(\psi^{\dagger}\psi^{\dagger}\nabla^{2}\psi^{\dagger}\psi\psi\psi + \text{h.c.})$

- Treat system as particle + dimer (technical trick from [Bedaque, Hammer & van Kolck, 1998])
- Assume Z₂ symmetry
- Spectrum given by poles in finite-volume particle-dimer scattering amplitude, resulting in

$$\det\left(\delta_{ll'}\delta_{mm'}\delta_{pq} - Z_l(p,q;E)R_{lm,l'm'}(q;E)\right) = 0.$$
 Finite-volume quantity

- \bullet Determine D₀, D₂, etc. needed to reproduce measured spectrum
- Solve infinite-volume integral equation to obtain scattering amplitudes in terms of determined D₀, D₂, ...

Similarities

- Both approaches need to parametrize interactions ($D_n vs \mathcal{K}_{3,df}$), and these intermediate quantities are cutoff dependent
- Dimer field sums two-particle bubbles in finite volume in exact correspondence to what we do
- Both approaches need to solve integral equation(s) to relate intermediate quantities to scattering amplitudes

Overall, both approaches very similar—indeed, HPR argue that they can be related algebraically

Differences

- NREFT vs. relativistic EFT—mainly/totally a matter of kinematics?
- \bullet NREFT approach imposes Z_2 symmetry, so far
- HPR sum over relative momentum of particle and dimer, while we replace sum with ``sum-minus-integral + integral"
 - Advantage of HPR: do not have to worry about K-matrix poles or cusps, so derivation is simpler
 - Disadvantage of HPR: need to use a much larger cutoff on momentum sums, and test cutoff independence of final physical quantities
 - Possible advantage of HPR: integral equations in infinite-volume are simpler

Differences are mainly issues of practical implementation; need numerical tests to see which approach is better

Summary

- Enormous progress in the two-particle sector
- Substantial progress in the three-particle sector where a major issue is how to turn the formalism into something practical
 - Extensions to higher spins, nonidentical particles and Lellouch-Lüscher factors will likely be straightforward
 - We (BHS) need to incorporate K-matrix poles in our approach and do a detailed comparison to NREFT
- Moving to 4+ particles in this fashion looks challenging but does not obviously introduce new theoretical issues
- Several interesting ideas for addressing inclusive processes

Upcoming workshops

"Multi-Hadron Systems from Lattice QCD" @ INT (Seattle)

Organizers: Raúl Briceño, Max Hansen, SRS, David Wilson

February 5-9, 2018

"Scattering Amplitudes and Resonance Properties from Lattice QCD" @ MITP (Mainz)

Organizers: Max Hansen, Sasa Prelovsek, SRS, Hartmut Wittig, Georg von Hippel

August, 27—31 2018